Local binary pattern based face recognition with automatically detected fiducial points
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928663" target="_blank" >RIV/49777513:23520/16:43928663 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/ICA-150506" target="_blank" >http://dx.doi.org/10.3233/ICA-150506</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/ICA-150506" target="_blank" >10.3233/ICA-150506</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local binary pattern based face recognition with automatically detected fiducial points
Popis výsledku v původním jazyce
This paper deals with automatic face recognition in the context of a real application for person identification developed for the Czech News Agency (ČTK). We focus on popular Local Binary Patterns (LPBs) that are frequently used in this field with high recognition accuracy. The main contribution consists in proposing and comparing several LBP-based approaches that detect important fiducial points fully automatically. We use a set of Gabor filters for this task. The proposed methods are evaluated on three standard corpora: ORL, FERET, AR face database and our ČTK dataset containing uncontrolled face images. Recognition results clearly show high quality of the proposed approaches that outperform significantly the baseline LBP approach on all corpora. The benefits of our methods are particularly evident in the case of real non controlled images (ČTK corpus) where the accuracy is increased by more than 20% in absolute value.
Název v anglickém jazyce
Local binary pattern based face recognition with automatically detected fiducial points
Popis výsledku anglicky
This paper deals with automatic face recognition in the context of a real application for person identification developed for the Czech News Agency (ČTK). We focus on popular Local Binary Patterns (LPBs) that are frequently used in this field with high recognition accuracy. The main contribution consists in proposing and comparing several LBP-based approaches that detect important fiducial points fully automatically. We use a set of Gabor filters for this task. The proposed methods are evaluated on three standard corpora: ORL, FERET, AR face database and our ČTK dataset containing uncontrolled face images. Recognition results clearly show high quality of the proposed approaches that outperform significantly the baseline LBP approach on all corpora. The benefits of our methods are particularly evident in the case of real non controlled images (ČTK corpus) where the accuracy is increased by more than 20% in absolute value.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Integrated Computer-Aided Engineering
ISSN
1069-2509
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
129-139
Kód UT WoS článku
000372026000004
EID výsledku v databázi Scopus
2-s2.0-84960958491