Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploration of Empty Space among Spherical Obstacles via Additively Weighted Voronoi Diagram

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928981" target="_blank" >RIV/49777513:23520/16:43928981 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1111/cgf.12980" target="_blank" >http://dx.doi.org/10.1111/cgf.12980</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/cgf.12980" target="_blank" >10.1111/cgf.12980</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploration of Empty Space among Spherical Obstacles via Additively Weighted Voronoi Diagram

  • Popis výsledku v původním jazyce

    Properties of granular materials or molecular structures are often studied on a simple geometric model - a set of 3D balls. If the balls simultaneously change in size by a constant speed, topological properties of the empty space outside all these balls may also change. Capturing the changes and their subsequent classification may reveal useful information about the model. This has already been solved for balls of the same size, but only an approximate solution has been reported for balls of different sizes. These solutions work on simplicial complexes derived from the dual structure of the ordinary Voronoi diagram of ball centers and use the mathematical concept of simplicial homology groups. If the balls have different radii, it is more appropriate to use the additively weighted Voronoi diagram (also known as the Apollonius diagram) instead of the ordinary diagram, but the dual structure is no longer a simplicial complex, so the previous approaches cannot be used directly. In this paper, a method is proposed to overcome this problem. The method works with Voronoi edges and vertices instead of the dual structure. Additional bridge edges are introduced to overcome disconnected cases. The output is a tree graph of events where cavities are created or merged during a simulated shrinking of the balls. This graph is then reorganized and filtered according to some criteria to get a more concise information about the development of the empty space in the model

  • Název v anglickém jazyce

    Exploration of Empty Space among Spherical Obstacles via Additively Weighted Voronoi Diagram

  • Popis výsledku anglicky

    Properties of granular materials or molecular structures are often studied on a simple geometric model - a set of 3D balls. If the balls simultaneously change in size by a constant speed, topological properties of the empty space outside all these balls may also change. Capturing the changes and their subsequent classification may reveal useful information about the model. This has already been solved for balls of the same size, but only an approximate solution has been reported for balls of different sizes. These solutions work on simplicial complexes derived from the dual structure of the ordinary Voronoi diagram of ball centers and use the mathematical concept of simplicial homology groups. If the balls have different radii, it is more appropriate to use the additively weighted Voronoi diagram (also known as the Apollonius diagram) instead of the ordinary diagram, but the dual structure is no longer a simplicial complex, so the previous approaches cannot be used directly. In this paper, a method is proposed to overcome this problem. The method works with Voronoi edges and vertices instead of the dual structure. Additional bridge edges are introduced to overcome disconnected cases. The output is a tree graph of events where cavities are created or merged during a simulated shrinking of the balls. This graph is then reorganized and filtered according to some criteria to get a more concise information about the development of the empty space in the model

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    COMPUTER GRAPHICS FORUM

  • ISSN

    1467-8659

  • e-ISSN

  • Svazek periodika

    35

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    249-258

  • Kód UT WoS článku

    000383444500024

  • EID výsledku v databázi Scopus

    2-s2.0-84982144055