Exploration of Empty Space among Spherical Obstacles via Additively Weighted Voronoi Diagram
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43928981" target="_blank" >RIV/49777513:23520/16:43928981 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1111/cgf.12980" target="_blank" >http://dx.doi.org/10.1111/cgf.12980</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/cgf.12980" target="_blank" >10.1111/cgf.12980</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploration of Empty Space among Spherical Obstacles via Additively Weighted Voronoi Diagram
Popis výsledku v původním jazyce
Properties of granular materials or molecular structures are often studied on a simple geometric model - a set of 3D balls. If the balls simultaneously change in size by a constant speed, topological properties of the empty space outside all these balls may also change. Capturing the changes and their subsequent classification may reveal useful information about the model. This has already been solved for balls of the same size, but only an approximate solution has been reported for balls of different sizes. These solutions work on simplicial complexes derived from the dual structure of the ordinary Voronoi diagram of ball centers and use the mathematical concept of simplicial homology groups. If the balls have different radii, it is more appropriate to use the additively weighted Voronoi diagram (also known as the Apollonius diagram) instead of the ordinary diagram, but the dual structure is no longer a simplicial complex, so the previous approaches cannot be used directly. In this paper, a method is proposed to overcome this problem. The method works with Voronoi edges and vertices instead of the dual structure. Additional bridge edges are introduced to overcome disconnected cases. The output is a tree graph of events where cavities are created or merged during a simulated shrinking of the balls. This graph is then reorganized and filtered according to some criteria to get a more concise information about the development of the empty space in the model
Název v anglickém jazyce
Exploration of Empty Space among Spherical Obstacles via Additively Weighted Voronoi Diagram
Popis výsledku anglicky
Properties of granular materials or molecular structures are often studied on a simple geometric model - a set of 3D balls. If the balls simultaneously change in size by a constant speed, topological properties of the empty space outside all these balls may also change. Capturing the changes and their subsequent classification may reveal useful information about the model. This has already been solved for balls of the same size, but only an approximate solution has been reported for balls of different sizes. These solutions work on simplicial complexes derived from the dual structure of the ordinary Voronoi diagram of ball centers and use the mathematical concept of simplicial homology groups. If the balls have different radii, it is more appropriate to use the additively weighted Voronoi diagram (also known as the Apollonius diagram) instead of the ordinary diagram, but the dual structure is no longer a simplicial complex, so the previous approaches cannot be used directly. In this paper, a method is proposed to overcome this problem. The method works with Voronoi edges and vertices instead of the dual structure. Additional bridge edges are introduced to overcome disconnected cases. The output is a tree graph of events where cavities are created or merged during a simulated shrinking of the balls. This graph is then reorganized and filtered according to some criteria to get a more concise information about the development of the empty space in the model
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER GRAPHICS FORUM
ISSN
1467-8659
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
249-258
Kód UT WoS článku
000383444500024
EID výsledku v databázi Scopus
2-s2.0-84982144055