An automatic initialization of interactive segmentation methods using shortest path basins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929877" target="_blank" >RIV/49777513:23520/16:43929877 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1134/S1054661816020188" target="_blank" >http://link.springer.com/article/10.1134/S1054661816020188</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1054661816020188" target="_blank" >10.1134/S1054661816020188</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An automatic initialization of interactive segmentation methods using shortest path basins
Popis výsledku v původním jazyce
Image segmentation is one of many fundamental problems in computer vision. The need to divide an image to a number of classes is often a part of a system that uses image processing methods. Therefore, lots of methods were developed that are based on different approaches. The image segmentation could be classified with respect to many criteria. One such a criterion is based on the degree of allowed interactivity. The interactivity could be of several types-interactive initialization, interaction while the computation is running or manual refinement of achieved results, for example. Especially the precise initialization plays an important role in many methods. Therefore the possibility to initialize the method manually is often invaluable advantage and information obtained this way could be the difference between good and poor results. Unfortunately, in many cases it is not possible to initialize a method manually and the process needs to be automated. In this paper, an approach for such an automation is presented. It is based on shortest paths in a graph and deriving an area of influence for each obtained seed point. This method is called shortest path basins.
Název v anglickém jazyce
An automatic initialization of interactive segmentation methods using shortest path basins
Popis výsledku anglicky
Image segmentation is one of many fundamental problems in computer vision. The need to divide an image to a number of classes is often a part of a system that uses image processing methods. Therefore, lots of methods were developed that are based on different approaches. The image segmentation could be classified with respect to many criteria. One such a criterion is based on the degree of allowed interactivity. The interactivity could be of several types-interactive initialization, interaction while the computation is running or manual refinement of achieved results, for example. Especially the precise initialization plays an important role in many methods. Therefore the possibility to initialize the method manually is often invaluable advantage and information obtained this way could be the difference between good and poor results. Unfortunately, in many cases it is not possible to initialize a method manually and the process needs to be automated. In this paper, an approach for such an automation is presented. It is based on shortest paths in a graph and deriving an area of influence for each obtained seed point. This method is called shortest path basins.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition and Image Analysis
ISSN
1054-6618
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
7
Strana od-do
336-342
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84975833222