Modeling of injured position during transportation based on Bayesian belief networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43929970" target="_blank" >RIV/49777513:23520/16:43929970 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-33816-3_8" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-33816-3_8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-33816-3_8" target="_blank" >10.1007/978-3-319-33816-3_8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling of injured position during transportation based on Bayesian belief networks
Popis výsledku v původním jazyce
Development of rescue robotics for injured transportation connected with problem of selection of injured position based on trauma type. The paper presents a model of a position of the injured during transportation based on Bayesian belief networks. The developed Bayesian belief network structure is represented by the signs of trauma, trauma itself, positions for transportation of the sufferer corresponding to trauma, and the relationships between them. Conditional probabilities tables is determined based on the expert information; available medical research focused on the identification of the similar relationships between the elements of the diagnostic process; historical statistics. The simulation results show that the developed Bayesian belief network enables one to solve probabilistic forecasting tasks based on subjective and incomplete data. The former are obtained during questioning the sufferer; the latter are based on the computer vision systems (examination) and sensors for various purposes (manipulation) that are installed on specialized robots. The developed tools are focused on the rescue robotics based on intelligent hardware and software for human-robot interaction.
Název v anglickém jazyce
Modeling of injured position during transportation based on Bayesian belief networks
Popis výsledku anglicky
Development of rescue robotics for injured transportation connected with problem of selection of injured position based on trauma type. The paper presents a model of a position of the injured during transportation based on Bayesian belief networks. The developed Bayesian belief network structure is represented by the signs of trauma, trauma itself, positions for transportation of the sufferer corresponding to trauma, and the relationships between them. Conditional probabilities tables is determined based on the expert information; available medical research focused on the identification of the similar relationships between the elements of the diagnostic process; historical statistics. The simulation results show that the developed Bayesian belief network enables one to solve probabilistic forecasting tasks based on subjective and incomplete data. The former are obtained during questioning the sufferer; the latter are based on the computer vision systems (examination) and sensors for various purposes (manipulation) that are installed on specialized robots. The developed tools are focused on the rescue robotics based on intelligent hardware and software for human-robot interaction.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the First International Scientific Conference "Intelligent Information Technologies for Industry" (IITI'16), Volume 2
ISBN
978-3-319-33815-6
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
8
Strana od-do
81-88
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Sochi, Russian Federation
Datum konání akce
16. 5. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—