Wave propagation in strongly heterogeneous fluid saturated porous medium: Asymptotic analysis and computational issues
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43930039" target="_blank" >RIV/49777513:23520/16:43930039 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wave propagation in strongly heterogeneous fluid saturated porous medium: Asymptotic analysis and computational issues
Popis výsledku v původním jazyce
We consider acoustic waves in fluid-saturated periodic media of the dual porosity type. At the mesoscopic level, the structure is periodic, consisting of two porous structures with highly different geometrical characterization of the microscopic components. The fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The porous skeleton is described using the Biot model. Large contrasts in the permeability and the poroelastic coefficients are considered at the mesoscopic scale. The two-scale homogenization method is used to obtain a macroscopic model. This model is an extension of previously studied problems with either rigid skeleton, or deformable Biot medium without large contrasts in the material properties. There are various combinations of the scaling of the mesoscopic permeability with respect to the scaling applied to the poroelastic coefficients and the topology at the mesoscopic levels. It is shown, how the scaling of the mesoscopic properties is related to geometrical features of the microstructure. We pursue some selected cases and compare the theoretical results with existing models reported in the literature. Namely we establish criteria allowing to distinguish which model (single, or double porosity) should be used in a given specific case of the contrast properties and the frequency ranges. The potential application of the models in the bone biomechanics are discussed.
Název v anglickém jazyce
Wave propagation in strongly heterogeneous fluid saturated porous medium: Asymptotic analysis and computational issues
Popis výsledku anglicky
We consider acoustic waves in fluid-saturated periodic media of the dual porosity type. At the mesoscopic level, the structure is periodic, consisting of two porous structures with highly different geometrical characterization of the microscopic components. The fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The porous skeleton is described using the Biot model. Large contrasts in the permeability and the poroelastic coefficients are considered at the mesoscopic scale. The two-scale homogenization method is used to obtain a macroscopic model. This model is an extension of previously studied problems with either rigid skeleton, or deformable Biot medium without large contrasts in the material properties. There are various combinations of the scaling of the mesoscopic permeability with respect to the scaling applied to the poroelastic coefficients and the topology at the mesoscopic levels. It is shown, how the scaling of the mesoscopic properties is related to geometrical features of the microstructure. We pursue some selected cases and compare the theoretical results with existing models reported in the literature. Namely we establish criteria allowing to distinguish which model (single, or double porosity) should be used in a given specific case of the contrast properties and the frequency ranges. The potential application of the models in the bone biomechanics are discussed.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JI - Kompositní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP101%2F12%2F2315" target="_blank" >GAP101/12/2315: Modelování šíření akustických vln v silně heterogenních prostředích; víceškálové numerické a analytické přístupy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů