Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fractions, Projective Representation, Duality, Linear Algebra and Geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F16%3A43952030" target="_blank" >RIV/49777513:23520/16:43952030 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fractions, Projective Representation, Duality, Linear Algebra and Geometry

  • Popis výsledku v původním jazyce

    This contribution describes relationship between fractions, projective representation, duality, linear algebra and geometry. Many problems lead to a system of linear equations. This paper presents equivalence of the Cross-product operation and solution of a system of linear equations Ax=0 or Ax=b using projective space representation and homogeneous coordinates. It leads to conclusion that division operation is not required for a solution of a system of linear equations, if the projective representation and homogeneous coordinates are used. An efficient solution on CPU and GPU based architectures is presented with an application to barycentric coordinates computation as well.

  • Název v anglickém jazyce

    Fractions, Projective Representation, Duality, Linear Algebra and Geometry

  • Popis výsledku anglicky

    This contribution describes relationship between fractions, projective representation, duality, linear algebra and geometry. Many problems lead to a system of linear equations. This paper presents equivalence of the Cross-product operation and solution of a system of linear equations Ax=0 or Ax=b using projective space representation and homogeneous coordinates. It leads to conclusion that division operation is not required for a solution of a system of linear equations, if the projective representation and homogeneous coordinates are used. An efficient solution on CPU and GPU based architectures is presented with an application to barycentric coordinates computation as well.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LH12181" target="_blank" >LH12181: Vývoj algoritmů počítačové grafiky a pro CAD/CAM systémy Development of Algorithms for Computer Graphics and CAD/CAM systems</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů