Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43929058" target="_blank" >RIV/49777513:23520/17:43929058 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00190-016-0951-4" target="_blank" >http://dx.doi.org/10.1007/s00190-016-0951-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-016-0951-4" target="_blank" >10.1007/s00190-016-0951-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components
Popis výsledku v původním jazyce
New spherical integral formulas among components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second and third-order gravitational tensors and initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (i) vertical-vertical, (ii) vertical-horizontal and (iii) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the correctness of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy
Název v anglickém jazyce
Spherical integral transforms of second-order gravitational tensor components onto third-order gravitational tensor components
Popis výsledku anglicky
New spherical integral formulas among components of the second- and third-order gravitational tensors are formulated in this article. First, we review the nomenclature and basic properties of the second and third-order gravitational tensors and initial points of mathematical derivations, i.e., the second- and third-order differential operators defined in the spherical local North-oriented reference frame and the analytical solutions of the gradiometric boundary-value problem, are summarized. Secondly, we apply the third-order differential operators to the analytical solutions of the gradiometric boundary-value problem which gives 30 new integral formulas transforming (i) vertical-vertical, (ii) vertical-horizontal and (iii) horizontal-horizontal second-order gravitational tensor components onto their third-order counterparts. Using spherical polar coordinates related sub-integral kernels can efficiently be decomposed into azimuthal and isotropic parts. Both spectral and closed forms of the isotropic kernels are provided and their limits are investigated. Thirdly, numerical experiments are performed to test the correctness of the new integral transforms and to investigate properties of the sub-integral kernels. The new mathematical apparatus is valid for any harmonic potential field and may be exploited, e.g., when gravitational/magnetic second- and third-order tensor components become available in the future. The new integral formulas also extend the well-known Meissl diagram and enrich the theoretical apparatus of geodesy
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-08045S" target="_blank" >GA15-08045S: Metody validace, zpracování a použití dat družicových misí v geodézii a geofyzice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF GEODESY
ISSN
0949-7714
e-ISSN
—
Svazek periodika
91
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
27
Strana od-do
167-194
Kód UT WoS článku
000394264400004
EID výsledku v databázi Scopus
2-s2.0-84990854042