Hermite interpolation by piecewise polynomial surfaces with polynomial area element
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931520" target="_blank" >RIV/49777513:23520/17:43931520 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/17:10370823
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cagd.2017.02.003" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2017.02.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cagd.2017.02.003" target="_blank" >10.1016/j.cagd.2017.02.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hermite interpolation by piecewise polynomial surfaces with polynomial area element
Popis výsledku v původním jazyce
This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches).
Název v anglickém jazyce
Hermite interpolation by piecewise polynomial surfaces with polynomial area element
Popis výsledku anglicky
This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER AIDED GEOMETRIC DESIGN
ISSN
0167-8396
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
30-47
Kód UT WoS článku
000398755900003
EID výsledku v databázi Scopus
2-s2.0-85014455183