Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hermite interpolation by piecewise polynomial surfaces with polynomial area element

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931520" target="_blank" >RIV/49777513:23520/17:43931520 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/17:10370823

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.cagd.2017.02.003" target="_blank" >http://dx.doi.org/10.1016/j.cagd.2017.02.003</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cagd.2017.02.003" target="_blank" >10.1016/j.cagd.2017.02.003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hermite interpolation by piecewise polynomial surfaces with polynomial area element

  • Popis výsledku v původním jazyce

    This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches).

  • Název v anglickém jazyce

    Hermite interpolation by piecewise polynomial surfaces with polynomial area element

  • Popis výsledku anglicky

    This paper is devoted to the construction of polynomial 2-surfaces which possess a polynomial area element. In particular we study these surfaces in the Euclidean space R^3 (where they are equivalent to the PN surfaces) and in the Minkowski space R^{3,1} (where they provide the MOS surfaces). We show generally in real vector spaces of any dimension equipped with a symmetric bilinear form that the Gram determinant of a parametric set of subspaces is a perfect square if and only if the Gram determinant of its orthogonal complement is a perfect square. Consequently the polynomial surfaces of a given degree with polynomial area element can be constructed from the prescribed normal fields solving a system of linear equations. The degree of the constructed surface depending on the degree and the properties of the prescribed normal field is investigated and discussed. We use the presented approach to interpolate a network of points and associated normals with piecewise polynomial surfaces with polynomial area element and demonstrate our method on a number of examples (constructions of quadrilateral as well as triangular patches).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    COMPUTER AIDED GEOMETRIC DESIGN

  • ISSN

    0167-8396

  • e-ISSN

  • Svazek periodika

    51

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

    30-47

  • Kód UT WoS článku

    000398755900003

  • EID výsledku v databázi Scopus

    2-s2.0-85014455183