On the Performance of Various Integration Schemes with the Absolute Nodal Coordinate Formulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931703" target="_blank" >RIV/49777513:23520/17:43931703 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Performance of Various Integration Schemes with the Absolute Nodal Coordinate Formulation
Popis výsledku v původním jazyce
The absolute nodal coordinate formulation (ANCF) is a modern finite element based method used in problems of flexible multibody dynamics. It uses the absolute coordinates of nodes and the slopes in nodes as the nodal coordinates. The benchmark problem of a flexible pendulum is used in order to investigate the performance of various time integration methods when using the ANCF. At first, the integration schemes with adaptive time step, which are already implemented in Matlab, are used. Then the classical Runge-Kutta method with the constant time step is implemented and its performance is shown. At last, the Newmark family methods are discussed and their benefits are pointed out.
Název v anglickém jazyce
On the Performance of Various Integration Schemes with the Absolute Nodal Coordinate Formulation
Popis výsledku anglicky
The absolute nodal coordinate formulation (ANCF) is a modern finite element based method used in problems of flexible multibody dynamics. It uses the absolute coordinates of nodes and the slopes in nodes as the nodal coordinates. The benchmark problem of a flexible pendulum is used in order to investigate the performance of various time integration methods when using the ANCF. At first, the integration schemes with adaptive time step, which are already implemented in Matlab, are used. Then the classical Runge-Kutta method with the constant time step is implemented and its performance is shown. At last, the Newmark family methods are discussed and their benefits are pointed out.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů