Rational adaptive blends among obstacles in 3D by contour method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931716" target="_blank" >RIV/49777513:23520/17:43931716 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cad.2017.04.006" target="_blank" >http://dx.doi.org/10.1016/j.cad.2017.04.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cad.2017.04.006" target="_blank" >10.1016/j.cad.2017.04.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rational adaptive blends among obstacles in 3D by contour method
Popis výsledku v původním jazyce
In this paper we will continue in investigating ‘contour method’ and its using for the computation of rational parameterizations of canal surfaces without a need of sum of squares (SOS) decomposition. Further approaches for constructing flexible smooth transitions between canal surfaces will be presented. Mainly, we focus on one particular application of recently introduced rational envelope curves, newly constructed over an arbitrary planar rational curve in space. Using this type of curves significantly simplifies the previous methods discussed in [1], and mainly new situations, which could not have been handled with the previous setup, are successfully solved, now. Especially a method for constructing rational adaptive blends which bypass a given obstacle (or more given obstacles when needed) is thoroughly discussed and its functionality is demonstrated on a number of examples. The designed approach works not only for simple obstacles represented by one-dimensional medial axis transforms but also for more general obstacles described by two-dimensional medial surface transforms.
Název v anglickém jazyce
Rational adaptive blends among obstacles in 3D by contour method
Popis výsledku anglicky
In this paper we will continue in investigating ‘contour method’ and its using for the computation of rational parameterizations of canal surfaces without a need of sum of squares (SOS) decomposition. Further approaches for constructing flexible smooth transitions between canal surfaces will be presented. Mainly, we focus on one particular application of recently introduced rational envelope curves, newly constructed over an arbitrary planar rational curve in space. Using this type of curves significantly simplifies the previous methods discussed in [1], and mainly new situations, which could not have been handled with the previous setup, are successfully solved, now. Especially a method for constructing rational adaptive blends which bypass a given obstacle (or more given obstacles when needed) is thoroughly discussed and its functionality is demonstrated on a number of examples. The designed approach works not only for simple obstacles represented by one-dimensional medial axis transforms but also for more general obstacles described by two-dimensional medial surface transforms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER-AIDED DESIGN
ISSN
0010-4485
e-ISSN
—
Svazek periodika
89
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
1-11
Kód UT WoS článku
000405879800001
EID výsledku v databázi Scopus
2-s2.0-85018776977