Anomaly-based annotation error detection in speech-synthesis corpora
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43931740" target="_blank" >RIV/49777513:23520/17:43931740 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.csl.2017.04.007" target="_blank" >http://dx.doi.org/10.1016/j.csl.2017.04.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csl.2017.04.007" target="_blank" >10.1016/j.csl.2017.04.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anomaly-based annotation error detection in speech-synthesis corpora
Popis výsledku v původním jazyce
We investigate the problem of automatic detection of annotation errors in single-speaker read-speech corpora used for speech synthesis. For the purpose of annotation error detection, we adopt an anomaly detection framework in which correctly annotated words are considered as normal examples on which the detection methods are trained. Misannotated words are then taken as anomalous examples which do not conform to normal patterns of the trained detection models. The results with F1 score being almost 89% show that anomaly detection could help detecting annotation errors in read-speech corpora for speech synthesis. We show that the automatically reduced feature sets achieve statistically similar results as the hand-crafted feature sets. We show that a reasonably good detection performance could be reached with using significantly fewer examples during the detector development phase. We also propose a concept of a voting detector – a combination of anomaly detectors in which each “single” detector “votes” on whether or not a testing word is annotated correctly, and the final decision is then made by aggregating the votes. Our results show that the voting detector has a potential to overcome each of the single anomaly detectors. Furthermore, we compare the proposed anomaly detection framework to a classification-based approach (which, unlike anomaly detection, needs to use anomalous examples during training) and we show that both approaches lead to statistically comparable results when all available anomalous examples are utilized during detector/classifier development. However, when a smaller number of anomalous examples are used, the proposed anomaly detection framework clearly outperforms the classification-based approach. A final listening test showed the effectiveness of the proposed anomaly-based annotation error detection for improving the quality of synthetic speech.
Název v anglickém jazyce
Anomaly-based annotation error detection in speech-synthesis corpora
Popis výsledku anglicky
We investigate the problem of automatic detection of annotation errors in single-speaker read-speech corpora used for speech synthesis. For the purpose of annotation error detection, we adopt an anomaly detection framework in which correctly annotated words are considered as normal examples on which the detection methods are trained. Misannotated words are then taken as anomalous examples which do not conform to normal patterns of the trained detection models. The results with F1 score being almost 89% show that anomaly detection could help detecting annotation errors in read-speech corpora for speech synthesis. We show that the automatically reduced feature sets achieve statistically similar results as the hand-crafted feature sets. We show that a reasonably good detection performance could be reached with using significantly fewer examples during the detector development phase. We also propose a concept of a voting detector – a combination of anomaly detectors in which each “single” detector “votes” on whether or not a testing word is annotated correctly, and the final decision is then made by aggregating the votes. Our results show that the voting detector has a potential to overcome each of the single anomaly detectors. Furthermore, we compare the proposed anomaly detection framework to a classification-based approach (which, unlike anomaly detection, needs to use anomalous examples during training) and we show that both approaches lead to statistically comparable results when all available anomalous examples are utilized during detector/classifier development. However, when a smaller number of anomalous examples are used, the proposed anomaly detection framework clearly outperforms the classification-based approach. A final listening test showed the effectiveness of the proposed anomaly-based annotation error detection for improving the quality of synthetic speech.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-04420S" target="_blank" >GA16-04420S: Kombinované využití fonetických a korpusově založených postupů při odstraňování rušivých jevů v řečové syntéze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER SPEECH AND LANGUAGE
ISSN
0885-2308
e-ISSN
—
Svazek periodika
46
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
35
Strana od-do
1-35
Kód UT WoS článku
000407609600001
EID výsledku v databázi Scopus
2-s2.0-85019202074