Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognition of the Electrolaryngeal Speech: Comparison Between Human and Machine

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932643" target="_blank" >RIV/49777513:23520/17:43932643 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-64206-2_57" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-64206-2_57</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-64206-2_57" target="_blank" >10.1007/978-3-319-64206-2_57</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognition of the Electrolaryngeal Speech: Comparison Between Human and Machine

  • Popis výsledku v původním jazyce

    Automatic recognition of an electrolaryngeal speech is usually a hard task due to the fact that all phonemes tend to be voiced. However, using a strong language model (LM) for continuous speech recognition task, we can achieve satisfactory recognition accuracy. On the other hand, the recognition of isolated words or phrase sentences containing only several words poses a problem, as in this case, the LM does not have a chance to properly support the recognition. At the same time, the recognition of short phrases has a great practical potential. In this paper, we would like to discuss poor performance of the electrolaryngeal speech automatic speech recognition (ASR), especially for isolated words. By comparing the results achieved by humans and the ASR system, we will attempt to show that even humans are unable to distinguish the identity of the word, differing only in voicing, always correctly. We describe three experiments: the one represents blind recognition, i.e., the ability to correctly recognize an isolated word selected from a vocabulary of more than a million words. The second experiment shows results achieved when there is some additional knowledge about the task, specifically, when the recognition vocabulary is reduced only to words that actually are included in the test. And the third test evaluates the ability to distinguish two similar words (differing only in voicing) for both the human and the ASR system.

  • Název v anglickém jazyce

    Recognition of the Electrolaryngeal Speech: Comparison Between Human and Machine

  • Popis výsledku anglicky

    Automatic recognition of an electrolaryngeal speech is usually a hard task due to the fact that all phonemes tend to be voiced. However, using a strong language model (LM) for continuous speech recognition task, we can achieve satisfactory recognition accuracy. On the other hand, the recognition of isolated words or phrase sentences containing only several words poses a problem, as in this case, the LM does not have a chance to properly support the recognition. At the same time, the recognition of short phrases has a great practical potential. In this paper, we would like to discuss poor performance of the electrolaryngeal speech automatic speech recognition (ASR), especially for isolated words. By comparing the results achieved by humans and the ASR system, we will attempt to show that even humans are unable to distinguish the identity of the word, differing only in voicing, always correctly. We describe three experiments: the one represents blind recognition, i.e., the ability to correctly recognize an isolated word selected from a vocabulary of more than a million words. The second experiment shows results achieved when there is some additional knowledge about the task, specifically, when the recognition vocabulary is reduced only to words that actually are included in the test. And the third test evaluates the ability to distinguish two similar words (differing only in voicing) for both the human and the ASR system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech and Dialogue, 20th International Conference, TSD 2017, Prague, Czech Republic, August 27-31 August, 2017, Proceedings

  • ISBN

    978-3-319-64205-5

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    509-517

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Prague, Czech Republic

  • Datum konání akce

    27. 8. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000449869200057