Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Monitoring disaster impact: detecting micro-events and eyewitness reports in mainstream and social media

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932713" target="_blank" >RIV/49777513:23520/17:43932713 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Monitoring disaster impact: detecting micro-events and eyewitness reports in mainstream and social media

  • Popis výsledku v původním jazyce

    This paper approaches the problem of monitoring the impact of the disasters by mining web sources for the events, caused by these disasters. We refer to these disaster effects as “micro-events”. Micro-events typically following a large disaster include casualties, damage on infrastructures, vehicles, services and resource supply, as well as relief operations. We present natural language grammar learning algorithms which form the basis for building micro-event detection systems from data, with no or minor human intervention, and we show how they can be applied to mainstream news and social media for monitoring disaster impact. We also experimented with applying statistical classifiers to distill, from social media situational updates on disasters, eyewitness reports from directly affected people. Finally, we describe a Twitter mining robot, which integrates some of these monitoring techniques and is intended to serve as a multilingual content hub for enhancing situational awareness.

  • Název v anglickém jazyce

    Monitoring disaster impact: detecting micro-events and eyewitness reports in mainstream and social media

  • Popis výsledku anglicky

    This paper approaches the problem of monitoring the impact of the disasters by mining web sources for the events, caused by these disasters. We refer to these disaster effects as “micro-events”. Micro-events typically following a large disaster include casualties, damage on infrastructures, vehicles, services and resource supply, as well as relief operations. We present natural language grammar learning algorithms which form the basis for building micro-event detection systems from data, with no or minor human intervention, and we show how they can be applied to mainstream news and social media for monitoring disaster impact. We also experimented with applying statistical classifiers to distill, from social media situational updates on disasters, eyewitness reports from directly affected people. Finally, we describe a Twitter mining robot, which integrates some of these monitoring techniques and is intended to serve as a multilingual content hub for enhancing situational awareness.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 14th International Conference on Information Systems for Crisis Response and Management

  • ISBN

  • ISSN

    2411-3387

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    11

  • Strana od-do

    592-602

  • Název nakladatele

    WiPe Paper - Social Media Studies

  • Místo vydání

    Albi

  • Místo konání akce

    Albi, Francie

  • Datum konání akce

    21. 5. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku