Monitoring disaster impact: detecting micro-events and eyewitness reports in mainstream and social media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43932713" target="_blank" >RIV/49777513:23520/17:43932713 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monitoring disaster impact: detecting micro-events and eyewitness reports in mainstream and social media
Popis výsledku v původním jazyce
This paper approaches the problem of monitoring the impact of the disasters by mining web sources for the events, caused by these disasters. We refer to these disaster effects as “micro-events”. Micro-events typically following a large disaster include casualties, damage on infrastructures, vehicles, services and resource supply, as well as relief operations. We present natural language grammar learning algorithms which form the basis for building micro-event detection systems from data, with no or minor human intervention, and we show how they can be applied to mainstream news and social media for monitoring disaster impact. We also experimented with applying statistical classifiers to distill, from social media situational updates on disasters, eyewitness reports from directly affected people. Finally, we describe a Twitter mining robot, which integrates some of these monitoring techniques and is intended to serve as a multilingual content hub for enhancing situational awareness.
Název v anglickém jazyce
Monitoring disaster impact: detecting micro-events and eyewitness reports in mainstream and social media
Popis výsledku anglicky
This paper approaches the problem of monitoring the impact of the disasters by mining web sources for the events, caused by these disasters. We refer to these disaster effects as “micro-events”. Micro-events typically following a large disaster include casualties, damage on infrastructures, vehicles, services and resource supply, as well as relief operations. We present natural language grammar learning algorithms which form the basis for building micro-event detection systems from data, with no or minor human intervention, and we show how they can be applied to mainstream news and social media for monitoring disaster impact. We also experimented with applying statistical classifiers to distill, from social media situational updates on disasters, eyewitness reports from directly affected people. Finally, we describe a Twitter mining robot, which integrates some of these monitoring techniques and is intended to serve as a multilingual content hub for enhancing situational awareness.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th International Conference on Information Systems for Crisis Response and Management
ISBN
—
ISSN
2411-3387
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
592-602
Název nakladatele
WiPe Paper - Social Media Studies
Místo vydání
Albi
Místo konání akce
Albi, Francie
Datum konání akce
21. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—