Modelling of evanescent and propagating modes in homogenized phononic structures in frequency and time domains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43933060" target="_blank" >RIV/49777513:23520/17:43933060 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eccomasproceedia.org/conferences/thematic-conferences/compdyn-2017/5496" target="_blank" >https://www.eccomasproceedia.org/conferences/thematic-conferences/compdyn-2017/5496</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7712/120117.5496.18256" target="_blank" >10.7712/120117.5496.18256</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of evanescent and propagating modes in homogenized phononic structures in frequency and time domains
Popis výsledku v původním jazyce
In the paper we deal with analytical and numerical methods for modelling phononic elastic structures subject to harmonic loading. The band gap prediction is based on the analysis of eigenvalues of the effective mass coefficients for a given frequency. Using a spectral decomposition method, the propagating and the evanescent modes can be distinguished in the frequency domain. We also developed a numerical scheme to simulate the wave response of the phononic 3D structures and plates, or beams in the time domain. Using the backward Laplace transformation, we obtain a model involving the intertia effects in terms of time convolutions, where the homogenized mass tensor serves as the convolution kernel. The aim of the reported modelling is to understand behaviour of the phononic structures subject to incident waves of frequencies falling in the partial (so-called weak) band gap intervals in which waves of certain polarizations cannot propagate. We discuss the issues related to the time-space discretization. Numerical examples of how homogenized phononic structures respond to a harmonic loading are presented.
Název v anglickém jazyce
Modelling of evanescent and propagating modes in homogenized phononic structures in frequency and time domains
Popis výsledku anglicky
In the paper we deal with analytical and numerical methods for modelling phononic elastic structures subject to harmonic loading. The band gap prediction is based on the analysis of eigenvalues of the effective mass coefficients for a given frequency. Using a spectral decomposition method, the propagating and the evanescent modes can be distinguished in the frequency domain. We also developed a numerical scheme to simulate the wave response of the phononic 3D structures and plates, or beams in the time domain. Using the backward Laplace transformation, we obtain a model involving the intertia effects in terms of time convolutions, where the homogenized mass tensor serves as the convolution kernel. The aim of the reported modelling is to understand behaviour of the phononic structures subject to incident waves of frequencies falling in the partial (so-called weak) band gap intervals in which waves of certain polarizations cannot propagate. We discuss the issues related to the time-space discretization. Numerical examples of how homogenized phononic structures respond to a harmonic loading are presented.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
COMPDYN 2017 - Proceedings of the 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering
ISBN
978-618-82844-1-8
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
17
Strana od-do
1330-1346
Název nakladatele
National Technical University of Athens
Místo vydání
Athens
Místo konání akce
Rhodes Island, Řecko
Datum konání akce
15. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—