Survey of traffic prediction methods for dynamic routing in overlay networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F17%3A43949462" target="_blank" >RIV/49777513:23520/17:43949462 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Survey of traffic prediction methods for dynamic routing in overlay networks
Popis výsledku v původním jazyce
We introduce and compare methods for traffic prediction focused on dynamic routing in overlay networks and their practical usage. Overlay networks often need special routing, even when underlay networks do routing on their own. There are more unknown variables then in traditional routing approach. Dynamic routing is based on several metrics and prediction could be judged by many statistical values. All introduced methods are compared by computing costs, implementation complexity and statistical values. Main statistical quantity is MAE (mean absolute error), which presents accuracy of prediction. We apply prediction on routing model to increase quality of service. So, we can focus on final route parameters not only on prediction accuracy. Naturally, main route parameter is transfer speed, but in real life scenarios we can find examples, where it is not only one metric. Let us assume real time audio/video stream, where we are interested in lowest range of scatter to reduce flapping of stream quality. In the paper, we will discuss impact of used metrics and algorithms on final quality of service.
Název v anglickém jazyce
Survey of traffic prediction methods for dynamic routing in overlay networks
Popis výsledku anglicky
We introduce and compare methods for traffic prediction focused on dynamic routing in overlay networks and their practical usage. Overlay networks often need special routing, even when underlay networks do routing on their own. There are more unknown variables then in traditional routing approach. Dynamic routing is based on several metrics and prediction could be judged by many statistical values. All introduced methods are compared by computing costs, implementation complexity and statistical values. Main statistical quantity is MAE (mean absolute error), which presents accuracy of prediction. We apply prediction on routing model to increase quality of service. So, we can focus on final route parameters not only on prediction accuracy. Naturally, main route parameter is transfer speed, but in real life scenarios we can find examples, where it is not only one metric. Let us assume real time audio/video stream, where we are interested in lowest range of scatter to reduce flapping of stream quality. In the paper, we will discuss impact of used metrics and algorithms on final quality of service.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Informatics 2017, IEEE 14th International Scientific Conference on Informatics
ISBN
978-1-5386-0888-3
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
5
Strana od-do
339-343
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Poprad
Datum konání akce
14. 11. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—