On the higher Cheeger problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43951718" target="_blank" >RIV/49777513:23520/18:43951718 - isvavai.cz</a>
Výsledek na webu
<a href="https://londmathsoc.onlinelibrary.wiley.com/journal/14697750" target="_blank" >https://londmathsoc.onlinelibrary.wiley.com/journal/14697750</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12119" target="_blank" >10.1112/jlms.12119</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the higher Cheeger problem
Popis výsledku v původním jazyce
We develop the notion of higher Cheeger constants for a measurable set $Omega subset mathbb{R}^N$. By the $k$-th Cheeger constant we mean the value [h_k(Omega) = inf max {h_1(E_1), dots, h_1(E_k)},] where the infimum is taken over all $k$-tuples of mutually disjoint subsets of $Omega$, and $h_1(E_i)$ is the classical Cheeger constant of $E_i$. We prove the existence of minimizers satisfying additional ``adjustment'' conditions and study their properties. A relation between $h_k(Omega)$ and spectral minimal $k$-partitions of $Omega$ associated with the first eigenvalues of the $p$-Laplacian under homogeneous Dirichlet boundary conditions is stated. The results are applied to determine the second Cheeger constant of some planar domains.
Název v anglickém jazyce
On the higher Cheeger problem
Popis výsledku anglicky
We develop the notion of higher Cheeger constants for a measurable set $Omega subset mathbb{R}^N$. By the $k$-th Cheeger constant we mean the value [h_k(Omega) = inf max {h_1(E_1), dots, h_1(E_k)},] where the infimum is taken over all $k$-tuples of mutually disjoint subsets of $Omega$, and $h_1(E_i)$ is the classical Cheeger constant of $E_i$. We prove the existence of minimizers satisfying additional ``adjustment'' conditions and study their properties. A relation between $h_k(Omega)$ and spectral minimal $k$-partitions of $Omega$ associated with the first eigenvalues of the $p$-Laplacian under homogeneous Dirichlet boundary conditions is stated. The results are applied to determine the second Cheeger constant of some planar domains.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES
ISSN
0024-6107
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
26
Strana od-do
575-600
Kód UT WoS článku
000437044700010
EID výsledku v databázi Scopus
2-s2.0-85044475007