Modelling of waves in fluid‐saturated porous media with high contrast heterogeneity: homogenization approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952349" target="_blank" >RIV/49777513:23520/18:43952349 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/zamm.201700062" target="_blank" >http://dx.doi.org/10.1002/zamm.201700062</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/zamm.201700062" target="_blank" >10.1002/zamm.201700062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of waves in fluid‐saturated porous media with high contrast heterogeneity: homogenization approach
Popis výsledku v původním jazyce
The paper deals with homogenization of a double porosity fluid‐saturated periodic medium. At the mesoscopic level, dynamic behaviour of the medium is described by the Biot model featured by high contrasts in the permeability and the poroelastic coefficients. The fluid flow is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. To respect the high contrasts, some of the material properties are scaled by the small parameter which characterizes the size of the heterogeneities being subject of the asymptotic analysis. The macroscopic model of the medium is obtained using the two‐scale homogenization based on the periodic unfolding method. For this, the Laplace transformation in time is used to introduce the local autonomous problems for characteristic responses defining the effective medium properties. In comparison with the low contrast heterogeneous medium, the microflow in the double porosity gives rise to the fading memory effects involved also in the macroscopic poroviscoelastic constitutive law. The problem treated in the paper is an extension of previously studied problems with either rigid skeleton part, or deformable Biot ‘medium without high contrasts in material properties. Numerical illustrations of the homogenized effective model parameters are given. The derived two‐scale model is a convenient tool for studying wave propagation in many natural media and provides a basis for material research.
Název v anglickém jazyce
Modelling of waves in fluid‐saturated porous media with high contrast heterogeneity: homogenization approach
Popis výsledku anglicky
The paper deals with homogenization of a double porosity fluid‐saturated periodic medium. At the mesoscopic level, dynamic behaviour of the medium is described by the Biot model featured by high contrasts in the permeability and the poroelastic coefficients. The fluid flow is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. To respect the high contrasts, some of the material properties are scaled by the small parameter which characterizes the size of the heterogeneities being subject of the asymptotic analysis. The macroscopic model of the medium is obtained using the two‐scale homogenization based on the periodic unfolding method. For this, the Laplace transformation in time is used to introduce the local autonomous problems for characteristic responses defining the effective medium properties. In comparison with the low contrast heterogeneous medium, the microflow in the double porosity gives rise to the fading memory effects involved also in the macroscopic poroviscoelastic constitutive law. The problem treated in the paper is an extension of previously studied problems with either rigid skeleton part, or deformable Biot ‘medium without high contrasts in material properties. Numerical illustrations of the homogenized effective model parameters are given. The derived two‐scale model is a convenient tool for studying wave propagation in many natural media and provides a basis for material research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ZAMM-Zeitschrift fur Angewandte Mathematik und Mechanik
ISSN
0044-2267
e-ISSN
—
Svazek periodika
98
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
35
Strana od-do
1699-1733
Kód UT WoS článku
000443716300012
EID výsledku v databázi Scopus
—