Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Online LDA-Based Language Model Adaptation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952476" target="_blank" >RIV/49777513:23520/18:43952476 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-00794-2_36" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-00794-2_36</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-00794-2_36" target="_blank" >10.1007/978-3-030-00794-2_36</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Online LDA-Based Language Model Adaptation

  • Popis výsledku v původním jazyce

    In this paper, we present our improvements in online topic-based language model adaptation. Our aim is to enhance the automatic speech recognition of a multi-topic speech which is to be recognized in the real-time (online). Latent Dirichlet Allocation (LDA) is an unsupervised topic model designed to uncover hidden semantic relationships between words and documents in a text corpus and thus reveal latent topics automatically. We use LDA to cluster the text corpus and to predict topics online from partial hypotheses during the real-time speech recognition. Based on detected topic changes in the speech, we adapt the language model on-the-fly. We are demonstrating the improvement of our system on the task of online subtitling of TV news, where we achieved 18% relative reduction of perplexity and 3.52% relative reduction of WER over non-adapted system.

  • Název v anglickém jazyce

    Online LDA-Based Language Model Adaptation

  • Popis výsledku anglicky

    In this paper, we present our improvements in online topic-based language model adaptation. Our aim is to enhance the automatic speech recognition of a multi-topic speech which is to be recognized in the real-time (online). Latent Dirichlet Allocation (LDA) is an unsupervised topic model designed to uncover hidden semantic relationships between words and documents in a text corpus and thus reveal latent topics automatically. We use LDA to cluster the text corpus and to predict topics online from partial hypotheses during the real-time speech recognition. Based on detected topic changes in the speech, we adapt the language model on-the-fly. We are demonstrating the improvement of our system on the task of online subtitling of TV news, where we achieved 18% relative reduction of perplexity and 3.52% relative reduction of WER over non-adapted system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Lecture Notes in Computer Science

  • ISBN

    978-3-030-00793-5

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    8

  • Strana od-do

    334-341

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Brno, Czech Republic

  • Datum konání akce

    11. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku