Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Networks for Multi-lingual Multi-label Document Classification

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F18%3A43952541" target="_blank" >RIV/49777513:23520/18:43952541 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-030-01418-6_8" target="_blank" >http://dx.doi.org/10.1007/978-3-030-01418-6_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01418-6_8" target="_blank" >10.1007/978-3-030-01418-6_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Networks for Multi-lingual Multi-label Document Classification

  • Popis výsledku v původním jazyce

    This paper proposes a novel approach for multi-lingual multilabel document classification based on neural networks. We use popular convolutional neural networks for this task with three different configurations. The first one uses static word2vec embeddings that are let as is, while the second one initializes it with word2vec and fine-tunes the embeddings while learning on the available data. The last method initializes embeddings randomly and then they are optimized to the classification task. The proposed method is evaluated on four languages, namely English, German, Spanish and Italian from the Reuters corpus. Experimental results show that the proposed approach is efficient and the best obtained F-measure reaches 84%.

  • Název v anglickém jazyce

    Neural Networks for Multi-lingual Multi-label Document Classification

  • Popis výsledku anglicky

    This paper proposes a novel approach for multi-lingual multilabel document classification based on neural networks. We use popular convolutional neural networks for this task with three different configurations. The first one uses static word2vec embeddings that are let as is, while the second one initializes it with word2vec and fine-tunes the embeddings while learning on the available data. The last method initializes embeddings randomly and then they are optimized to the classification task. The proposed method is evaluated on four languages, namely English, German, Spanish and Italian from the Reuters corpus. Experimental results show that the proposed approach is efficient and the best obtained F-measure reaches 84%.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks and Machine Learning – ICANN 2018

  • ISBN

    978-3-030-01417-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    11

  • Strana od-do

    73-83

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Rhodes, Greece

  • Datum konání akce

    4. 10. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku