How to calculate Bouguer gravity data in planetary studies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43952632" target="_blank" >RIV/49777513:23520/19:43952632 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10712-018-9504-0" target="_blank" >https://link.springer.com/article/10.1007/s10712-018-9504-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10712-018-9504-0" target="_blank" >10.1007/s10712-018-9504-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to calculate Bouguer gravity data in planetary studies
Popis výsledku v původním jazyce
In terrestrial studies, Bouguer gravity data is routinely computed by adopting various numerical schemes, starting from the most basic concept of approximating the actual topography by an infinite Bouguer plate, through adding a planar terrain correction to account for a local/regional terrain geometry, to more advanced schemes that involve the computation of the topographic gravity correction by taking into consideration a gravitational contribution of the whole topography while adopting a spherical (or ellipsoidal) approximation. Moreover, the topographic density information has significantly improved the gravity forward modeling and interpretations, especially in polar regions (by accounting for a density contrast of polar glaciers) and in regions characterized by a complex geological structure. Whereas in geodetic studies (such as a gravimetric geoid modeling) only the gravitational contribution of topographic masses above the geoid is computed and subsequently removed from observed (free-air) gravity data, geophysical studies focusing on interpreting the Earth’s inner structure usually require the application of additional stripping gravity corrections that account for known anomalous density structures in order to reveal an unknown (and sought) density structure or density interface. In planetary studies, numerical schemes applied to compile Bouguer gravity maps might differ from terrestrial studies due to two reasons. While in terrestrial studies the topography is defined by physical heights above the geoid surface (i.e., the geoid-referenced topography), in planetary studies the topography is commonly described by geometric heights above the geometric reference surface (i.e., the geometric-referenced topography). Moreover, large parts of a planetary surface have negative heights. This obviously has implications on the computation of the topographic gravity correction and consequently Bouguer gravity data because in this case the application of this correction not only removes the gravitational contribution of a topographic mass surplus, but also compensates for a topographic mass deficit. In this study, we examine numerically possible options of computing the topographic gravity correction and consequently the Bouguer gravity data in planetary applications. In agreement with a theoretical definition of the Bouguer gravity correction, the Bouguer gravity maps compiled based on adopting the geoid-referenced topography are the most relevant. In this case, the application of the topographic gravity correction removes only the gravitational contribution of the topography. Alternative options based on using geometric heights, on the other hand, subtract an additional gravitational signal, spatially closely correlated with the geoidal undulations, that is often attributed to deep mantle density heterogeneities, mantle plumes or other phenomena that are not directly related to a topographic density distribution.
Název v anglickém jazyce
How to calculate Bouguer gravity data in planetary studies
Popis výsledku anglicky
In terrestrial studies, Bouguer gravity data is routinely computed by adopting various numerical schemes, starting from the most basic concept of approximating the actual topography by an infinite Bouguer plate, through adding a planar terrain correction to account for a local/regional terrain geometry, to more advanced schemes that involve the computation of the topographic gravity correction by taking into consideration a gravitational contribution of the whole topography while adopting a spherical (or ellipsoidal) approximation. Moreover, the topographic density information has significantly improved the gravity forward modeling and interpretations, especially in polar regions (by accounting for a density contrast of polar glaciers) and in regions characterized by a complex geological structure. Whereas in geodetic studies (such as a gravimetric geoid modeling) only the gravitational contribution of topographic masses above the geoid is computed and subsequently removed from observed (free-air) gravity data, geophysical studies focusing on interpreting the Earth’s inner structure usually require the application of additional stripping gravity corrections that account for known anomalous density structures in order to reveal an unknown (and sought) density structure or density interface. In planetary studies, numerical schemes applied to compile Bouguer gravity maps might differ from terrestrial studies due to two reasons. While in terrestrial studies the topography is defined by physical heights above the geoid surface (i.e., the geoid-referenced topography), in planetary studies the topography is commonly described by geometric heights above the geometric reference surface (i.e., the geometric-referenced topography). Moreover, large parts of a planetary surface have negative heights. This obviously has implications on the computation of the topographic gravity correction and consequently Bouguer gravity data because in this case the application of this correction not only removes the gravitational contribution of a topographic mass surplus, but also compensates for a topographic mass deficit. In this study, we examine numerically possible options of computing the topographic gravity correction and consequently the Bouguer gravity data in planetary applications. In agreement with a theoretical definition of the Bouguer gravity correction, the Bouguer gravity maps compiled based on adopting the geoid-referenced topography are the most relevant. In this case, the application of the topographic gravity correction removes only the gravitational contribution of the topography. Alternative options based on using geometric heights, on the other hand, subtract an additional gravitational signal, spatially closely correlated with the geoidal undulations, that is often attributed to deep mantle density heterogeneities, mantle plumes or other phenomena that are not directly related to a topographic density distribution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-06943S" target="_blank" >GA18-06943S: Teorie zpracování gradientů geopotenciálu vyšších řádů a jejich použití v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surveys in Geophysics
ISSN
0169-3298
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
26
Strana od-do
107-132
Kód UT WoS článku
000454844600006
EID výsledku v databázi Scopus
2-s2.0-85056308796