A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their derivatives
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43954250" target="_blank" >RIV/49777513:23520/19:43954250 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494619300249" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494619300249</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2019.01.020" target="_blank" >10.1016/j.asoc.2019.01.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their derivatives
Popis výsledku v původním jazyce
This paper illustrates the development and the applicability of an Evolutionary Computation approach to enhance the treatment of Type-1 diabetic patients that necessitate insulin injections. In fact, being such a disease associated to a malfunctioning pancreas that generates an insufficient amount of insulin, a way to enhance the quality of life of these patients is to implement an artificial pancreas able to artificially regulate the insulin dosage. This work aims at extrapolating a regression model, capable of estimating the blood glucose (BG) through interstitial glucose (IG) measurements and their numerical first derivatives. Such an approach represents a viable preliminary stage in building the basic component of this artificial pancreas. In particular, considered the high complexity of the reciprocal interactions, an evolutionary-based strategy is outlined to extrapolate a mathematical relationship between BG and IG and its derivative. The investigation is carried out about the accuracy of personalized models and of a global relationship model for all of the subjects under examination. The discovered models are assessed through a comparison with other models during the experiments on personalized and global data.
Název v anglickém jazyce
A genetic programming-based regression for extrapolating a blood glucose-dynamics model from interstitial glucose measurements and their derivatives
Popis výsledku anglicky
This paper illustrates the development and the applicability of an Evolutionary Computation approach to enhance the treatment of Type-1 diabetic patients that necessitate insulin injections. In fact, being such a disease associated to a malfunctioning pancreas that generates an insufficient amount of insulin, a way to enhance the quality of life of these patients is to implement an artificial pancreas able to artificially regulate the insulin dosage. This work aims at extrapolating a regression model, capable of estimating the blood glucose (BG) through interstitial glucose (IG) measurements and their numerical first derivatives. Such an approach represents a viable preliminary stage in building the basic component of this artificial pancreas. In particular, considered the high complexity of the reciprocal interactions, an evolutionary-based strategy is outlined to extrapolate a mathematical relationship between BG and IG and its derivative. The investigation is carried out about the accuracy of personalized models and of a global relationship model for all of the subjects under examination. The discovered models are assessed through a comparison with other models during the experiments on personalized and global data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing Journal
ISSN
1568-4946
e-ISSN
—
Svazek periodika
77
Číslo periodika v rámci svazku
APR 2019
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
316-328
Kód UT WoS článku
000462042200024
EID výsledku v databázi Scopus
2-s2.0-85061062477