Cloud Infrastructure for Storing and Processing EEG and ERP Experimental Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955129" target="_blank" >RIV/49777513:23520/19:43955129 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5220/0007746502740281" target="_blank" >http://dx.doi.org/10.5220/0007746502740281</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0007746502740281" target="_blank" >10.5220/0007746502740281</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cloud Infrastructure for Storing and Processing EEG and ERP Experimental Data
Popis výsledku v původním jazyce
Current infrastructures for experimental data, results and computational tools make a shift from locally maintained solutions to remote cloud-based infrastructures. It brings a higher availability, sustainability and performance. However, specifics of different research areas require development of customized solutions for individual research domains. For example, electroencephalography and event-related potentials (EEG/ERP) use specific devices, data formats and machine learning workflows. As a solution, a cloud-based system for the EEG/ERP domain containing a distributed data storage, a signal processing method library and a client GUI is presented. The signal processing method library is used for training of classifiers and classifying the data in the cloud-based system controlled by the GUI. The presented system was tested using a machine learning workflow based on the data stored in the system. In the workflow, various classifiers were trained and their parameters stored into the system. Finally, testing data were classified using previously trained classifiers.
Název v anglickém jazyce
Cloud Infrastructure for Storing and Processing EEG and ERP Experimental Data
Popis výsledku anglicky
Current infrastructures for experimental data, results and computational tools make a shift from locally maintained solutions to remote cloud-based infrastructures. It brings a higher availability, sustainability and performance. However, specifics of different research areas require development of customized solutions for individual research domains. For example, electroencephalography and event-related potentials (EEG/ERP) use specific devices, data formats and machine learning workflows. As a solution, a cloud-based system for the EEG/ERP domain containing a distributed data storage, a signal processing method library and a client GUI is presented. The signal processing method library is used for training of classifiers and classifying the data in the cloud-based system controlled by the GUI. The presented system was tested using a machine learning workflow based on the data stored in the system. In the workflow, various classifiers were trained and their parameters stored into the system. Finally, testing data were classified using previously trained classifiers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 5th International Conference on Information and Communication Technologies for Ageing Well and e-Health
ISBN
978-989-758-368-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
274-281
Název nakladatele
SciTePress
Místo vydání
Setúbal
Místo konání akce
Heraklion, Crete
Datum konání akce
2. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—