Multiscale finite element calculations in Python using SfePy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955331" target="_blank" >RIV/49777513:23520/19:43955331 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23640/19:43955331
Výsledek na webu
<a href="https://doi.org/10.1007/s10444-019-09666-0" target="_blank" >https://doi.org/10.1007/s10444-019-09666-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10444-019-09666-0" target="_blank" >10.1007/s10444-019-09666-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiscale finite element calculations in Python using SfePy
Popis výsledku v původním jazyce
SfePy (simple finite elements in Python) is a software for solving various kinds of problems described by partial differential equations in one, two, or three spatial dimensions by the finite element method. Its source code is mostly (85%) Python and relies on fast vectorized operations provided by the NumPy package. For a particular problem, two interfaces can be used: a declarative application programming interface (API), where problem description/definition files (Python modules) are used to define a calculation, and an imperative API, that can be used for interactive commands, or in scripts and libraries. After outlining the SfePy package development, the paper introduces its implementation, structure, and general features. The components for defining a partial differential equation are described using an example of a simple heat conduction problem. Specifically, the declarative API of SfePy is presented in the example. To illustrate one of SfePy’s main assets, the framework for implementing complex multiscale models based on the theory of homogenization, an example of a two-scale piezoelastic model is presented, showing both the mathematical description of the problem and the corresponding code.
Název v anglickém jazyce
Multiscale finite element calculations in Python using SfePy
Popis výsledku anglicky
SfePy (simple finite elements in Python) is a software for solving various kinds of problems described by partial differential equations in one, two, or three spatial dimensions by the finite element method. Its source code is mostly (85%) Python and relies on fast vectorized operations provided by the NumPy package. For a particular problem, two interfaces can be used: a declarative application programming interface (API), where problem description/definition files (Python modules) are used to define a calculation, and an imperative API, that can be used for interactive commands, or in scripts and libraries. After outlining the SfePy package development, the paper introduces its implementation, structure, and general features. The components for defining a partial differential equation are described using an example of a simple heat conduction problem. Specifically, the declarative API of SfePy is presented in the example. To illustrate one of SfePy’s main assets, the framework for implementing complex multiscale models based on the theory of homogenization, an example of a two-scale piezoelastic model is presented, showing both the mathematical description of the problem and the corresponding code.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Computational Mathematics
ISSN
1019-7168
e-ISSN
—
Svazek periodika
45
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
1897-1921
Kód UT WoS článku
000480573200009
EID výsledku v databázi Scopus
2-s2.0-85065995512