Higher-order gravitational potential gradients for geoscientific applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955630" target="_blank" >RIV/49777513:23520/19:43955630 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.earscirev.2019.102937" target="_blank" >https://doi.org/10.1016/j.earscirev.2019.102937</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.earscirev.2019.102937" target="_blank" >10.1016/j.earscirev.2019.102937</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Higher-order gravitational potential gradients for geoscientific applications
Popis výsledku v původním jazyce
Gravity data have been applied for modelling and interpretation studies in geosciences. This contribution reviews currently observable and foreseen gravity data represented by gradients of the gravitational potential. Functional models linking 3-D mass density distribution functions to potential gradients of up to the third order are formulated using volume integrals of the Newtonian type with unitless kernel functions expressed both analytically and using infinite series of associated Legendre functions. Spatial and spectral properties of the kernel functions are analysed and sensitivity of the gradients to particular mass density distributions is studied. Two particular mass density distribution models are used in numerical experiments: a local 3-D mass density model representing shallow mass density variations and a global mass model represented by Earth's upper sediments with lateral mass density variations. Computed values of the gradients demonstrate their different sensitivities to particular mass density distributions which change with an increasing distance of the gradients from gravitating masses. Third-order gradients are particularly useful for studying near subsurface or shallow density structures such as caves, caverns, salt domes, sediment basement morphology, continental margins or buried fault systems that could be identified spatially more closely. Thus, higher-order gradients would offer an interesting tool for mass density mapping once their observability with the sufficient accuracy and resolution is realized.
Název v anglickém jazyce
Higher-order gravitational potential gradients for geoscientific applications
Popis výsledku anglicky
Gravity data have been applied for modelling and interpretation studies in geosciences. This contribution reviews currently observable and foreseen gravity data represented by gradients of the gravitational potential. Functional models linking 3-D mass density distribution functions to potential gradients of up to the third order are formulated using volume integrals of the Newtonian type with unitless kernel functions expressed both analytically and using infinite series of associated Legendre functions. Spatial and spectral properties of the kernel functions are analysed and sensitivity of the gradients to particular mass density distributions is studied. Two particular mass density distribution models are used in numerical experiments: a local 3-D mass density model representing shallow mass density variations and a global mass model represented by Earth's upper sediments with lateral mass density variations. Computed values of the gradients demonstrate their different sensitivities to particular mass density distributions which change with an increasing distance of the gradients from gravitating masses. Third-order gradients are particularly useful for studying near subsurface or shallow density structures such as caves, caverns, salt domes, sediment basement morphology, continental margins or buried fault systems that could be identified spatially more closely. Thus, higher-order gradients would offer an interesting tool for mass density mapping once their observability with the sufficient accuracy and resolution is realized.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-06943S" target="_blank" >GA18-06943S: Teorie zpracování gradientů geopotenciálu vyšších řádů a jejich použití v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EARTH-SCIENCE REVIEWS
ISSN
0012-8252
e-ISSN
—
Svazek periodika
198
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
000498752600020
EID výsledku v databázi Scopus
2-s2.0-85072162039