Simple and Fast Oexp(N) Algorithm for Finding an Exact Maximum Distance in E2 Instead of O(N^2) or O(N lgN)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955680" target="_blank" >RIV/49777513:23520/19:43955680 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-24289-3_27" target="_blank" >http://dx.doi.org/10.1007/978-3-030-24289-3_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-24289-3_27" target="_blank" >10.1007/978-3-030-24289-3_27</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simple and Fast Oexp(N) Algorithm for Finding an Exact Maximum Distance in E2 Instead of O(N^2) or O(N lgN)
Popis výsledku v původním jazyce
Finding a maximum distance of points in E2 or in E3 is one of those. It is a frequent task required in many applications. In spite of the fact that it is an extremely simple task, the known “Brute force” algorithm is of O(N2) complexity. Due to this complexity the run-time is very long and unacceptable especially if medium or larger data sets are to be processed. An alternative approach is convex hull computation with complexity higher than O(N) followed by diameter computation with O(M2) complexity. The situation is similar to sorting, where the bubble sort algorithm has O(N2) complexity that cannot be used in practice even for medium data sets. This paper describes a novel and fast, simple and robust algorithm with O(N) expected complexity which enables to decrease run-time needed to find the maximum distance of two points in E2. It can be easily modified for the Ek case in general. The proposed algorithm has been evaluated experimentally on larger different datasets in order to verify it and prove expected properties of it. Experiments proved the advantages of the proposed algorithm over the standard algorithms based on the “Brute force”, convex hull or convex hull diameters approaches. The proposed algorithm gives a significant speed-up to applications, when medium and large data sets are processed. It is over 10 000 times faster than the standard “Brute force” algorithm for 106 points randomly distributed points in E2 and over 4 times faster than convex hull diameter computation. The speed-up of the proposed algorithm grows with the number of points processed.
Název v anglickém jazyce
Simple and Fast Oexp(N) Algorithm for Finding an Exact Maximum Distance in E2 Instead of O(N^2) or O(N lgN)
Popis výsledku anglicky
Finding a maximum distance of points in E2 or in E3 is one of those. It is a frequent task required in many applications. In spite of the fact that it is an extremely simple task, the known “Brute force” algorithm is of O(N2) complexity. Due to this complexity the run-time is very long and unacceptable especially if medium or larger data sets are to be processed. An alternative approach is convex hull computation with complexity higher than O(N) followed by diameter computation with O(M2) complexity. The situation is similar to sorting, where the bubble sort algorithm has O(N2) complexity that cannot be used in practice even for medium data sets. This paper describes a novel and fast, simple and robust algorithm with O(N) expected complexity which enables to decrease run-time needed to find the maximum distance of two points in E2. It can be easily modified for the Ek case in general. The proposed algorithm has been evaluated experimentally on larger different datasets in order to verify it and prove expected properties of it. Experiments proved the advantages of the proposed algorithm over the standard algorithms based on the “Brute force”, convex hull or convex hull diameters approaches. The proposed algorithm gives a significant speed-up to applications, when medium and large data sets are processed. It is over 10 000 times faster than the standard “Brute force” algorithm for 106 points randomly distributed points in E2 and over 4 times faster than convex hull diameter computation. The speed-up of the proposed algorithm grows with the number of points processed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05534S" target="_blank" >GA17-05534S: Meshless metody pro vizualizaci velkých časově-prostorových vektorových dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Computational Science and Its Applications – ICCSA 2019
ISBN
978-3-030-24288-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
367-380
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Saint Petersburg University, Saint Petersburg
Datum konání akce
1. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—