PocketEAR: An Assistive Sound Classification System for Hearing-Impaired
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955841" target="_blank" >RIV/49777513:23520/19:43955841 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-26061-3" target="_blank" >http://dx.doi.org/10.1007/978-3-030-26061-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-26061-3" target="_blank" >10.1007/978-3-030-26061-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PocketEAR: An Assistive Sound Classification System for Hearing-Impaired
Popis výsledku v původním jazyce
This paper describes the design and operation of an assistive system called PocketEAR which is primarily targeted towards hearing-impaired users. It helps them with orientation in acoustically active environments by continuously monitoring and classifying the incoming sounds and displaying the captured sound classes to the users. The environmental sound recognizer is designed as a two-stage deep convolutional neural network classifier (consists of the so-called superclassifier and a set of the so-called subclassifiers) fed with sequences of MFCC vectors. It is wrapped in a distributed client-server system where the sound capturing in terrain, (pre)processing and displaying of the classication results are performed by instances of a mobile client application, and the actual classication and maintenance are carried out by two co-operating servers. The paper discusses in details the architecture of the environmental sound classier as well as the used task-specific sound processing
Název v anglickém jazyce
PocketEAR: An Assistive Sound Classification System for Hearing-Impaired
Popis výsledku anglicky
This paper describes the design and operation of an assistive system called PocketEAR which is primarily targeted towards hearing-impaired users. It helps them with orientation in acoustically active environments by continuously monitoring and classifying the incoming sounds and displaying the captured sound classes to the users. The environmental sound recognizer is designed as a two-stage deep convolutional neural network classifier (consists of the so-called superclassifier and a set of the so-called subclassifiers) fed with sequences of MFCC vectors. It is wrapped in a distributed client-server system where the sound capturing in terrain, (pre)processing and displaying of the classication results are performed by instances of a mobile client application, and the actual classication and maintenance are carried out by two co-operating servers. The paper discusses in details the architecture of the environmental sound classier as well as the used task-specific sound processing
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Speech and Computer
ISBN
978-3-030-26060-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
11
Strana od-do
82-92
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Istanbul
Datum konání akce
20. 8. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—