Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Using Auto-Encoder BiLSTM Neural Network for Czech Grapheme-to-Phoneme Conversion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955897" target="_blank" >RIV/49777513:23520/19:43955897 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_8" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-27947-9_8" target="_blank" >10.1007/978-3-030-27947-9_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Using Auto-Encoder BiLSTM Neural Network for Czech Grapheme-to-Phoneme Conversion

  • Popis výsledku v původním jazyce

    The crucial part of almost all current TTS systems is a grapheme-to-phoneme (G2P) conversion, i.e. the transcription of any input grapheme sequence into the correct sequence of phonemes in the given language. Unfortunately, the preparation of transcription rules and pronunciation dictionaries is not an easy process for new languages in TTS systems. For that reason, in the presented paper, we focus on the creation of an automatic G2P model, based on neural networks (NN). But, contrary to the majority of related works in G2P field, using only separate words as an input, we consider a whole phrase the input of our proposed NN model. That approach should, in our opinion, lead to more precise phonetic transcription output because the pronunciation of a word can depend on the surrounding words. The results of the trained G2P model are presented on the Czech language where the cross-word-boundary phenomena occur quite often, and they are compared to the rule-based approach.

  • Název v anglickém jazyce

    Using Auto-Encoder BiLSTM Neural Network for Czech Grapheme-to-Phoneme Conversion

  • Popis výsledku anglicky

    The crucial part of almost all current TTS systems is a grapheme-to-phoneme (G2P) conversion, i.e. the transcription of any input grapheme sequence into the correct sequence of phonemes in the given language. Unfortunately, the preparation of transcription rules and pronunciation dictionaries is not an easy process for new languages in TTS systems. For that reason, in the presented paper, we focus on the creation of an automatic G2P model, based on neural networks (NN). But, contrary to the majority of related works in G2P field, using only separate words as an input, we consider a whole phrase the input of our proposed NN model. That approach should, in our opinion, lead to more precise phonetic transcription output because the pronunciation of a word can depend on the surrounding words. The results of the trained G2P model are presented on the Czech language where the cross-word-boundary phenomena occur quite often, and they are compared to the rule-based approach.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-19324S" target="_blank" >GA19-19324S: Plně trénovatelná syntéza české řeči z textu s využitím hlubokých neuronových sítí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech, and Dialogue 22nd International Conference, TSD 2019, Ljubljana,Slovenia, September 11-13, 2019, Proceedings

  • ISBN

    978-3-030-27946-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    12

  • Strana od-do

    91-102

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Ljubljana, Slovenia

  • Datum konání akce

    11. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku