Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of Synthetic Speech by GMM-Based Continuous Detection of Emotional States

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43956397" target="_blank" >RIV/49777513:23520/19:43956397 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_22" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-27947-9_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-27947-9_22" target="_blank" >10.1007/978-3-030-27947-9_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of Synthetic Speech by GMM-Based Continuous Detection of Emotional States

  • Popis výsledku v původním jazyce

    The paper describes a system for automatic evaluation of synthetic speech quality based on continuous detection of emotional states throughout the spoken sentence using a Gaussian mixture model (GMM) classification. The final evaluation decision is made by statistical analysis of the results of emotional class differences between the sentences of original male or female voices and the speech synthesized by various methods with different parameters, approaches to prosody manipulation, etc. The basic experiments confirm the functionality of the developed system producing results comparable with those obtained by the standard listening test method. Additional investigations have shown that a number of mixtures, types of speech features, and a speech database used for creation and training of GMMs have a relatively great influence on continuous emotional style detection and the final quality evaluation of the tested synthetic speech.

  • Název v anglickém jazyce

    Evaluation of Synthetic Speech by GMM-Based Continuous Detection of Emotional States

  • Popis výsledku anglicky

    The paper describes a system for automatic evaluation of synthetic speech quality based on continuous detection of emotional states throughout the spoken sentence using a Gaussian mixture model (GMM) classification. The final evaluation decision is made by statistical analysis of the results of emotional class differences between the sentences of original male or female voices and the speech synthesized by various methods with different parameters, approaches to prosody manipulation, etc. The basic experiments confirm the functionality of the developed system producing results comparable with those obtained by the standard listening test method. Additional investigations have shown that a number of mixtures, types of speech features, and a speech database used for creation and training of GMMs have a relatively great influence on continuous emotional style detection and the final quality evaluation of the tested synthetic speech.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Text, Speech, and Dialogue 22nd International Conference, TSD 2019, Ljubljana,Slovenia, September 11-13, 2019, Proceedings

  • ISBN

    978-3-030-27946-2

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    10

  • Strana od-do

    264-273

  • Název nakladatele

    Springer

  • Místo vydání

    Cham

  • Místo konání akce

    Ljubljana, Slovenia

  • Datum konání akce

    11. 9. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku