ZCU-NLP at MADAR 2019: Recognizing Arabic Dialects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43957163" target="_blank" >RIV/49777513:23520/19:43957163 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.18653/v1/W19-4623" target="_blank" >http://dx.doi.org/10.18653/v1/W19-4623</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/W19-4623" target="_blank" >10.18653/v1/W19-4623</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ZCU-NLP at MADAR 2019: Recognizing Arabic Dialects
Popis výsledku v původním jazyce
In this paper, we present our systems for the MADAR Shared Task: Arabic Fine-Grained Dialect Identification. The shared task consists of two subtasks. The goal of Subtask–1 (S-1) is to detect an Arabic city dialect in a given text and the goal of Subtask–2 (S-2) is to predict the country of origin of a Twitter user by using tweets posted by the user. In S-1, our proposed systems are based on language modelling. We use language models to extract features that are later used as an input for other machine learning algorithms. We also experiment with recurrent neural networks (RNN), but these experiments showed that simpler machine learning algorithms are more successful. Our system achieves 0.658 macro F1-score and our rank is 6 th out of 19 teams in S-1 and 7 th in S-2 with 0.475 macro F1-score.
Název v anglickém jazyce
ZCU-NLP at MADAR 2019: Recognizing Arabic Dialects
Popis výsledku anglicky
In this paper, we present our systems for the MADAR Shared Task: Arabic Fine-Grained Dialect Identification. The shared task consists of two subtasks. The goal of Subtask–1 (S-1) is to detect an Arabic city dialect in a given text and the goal of Subtask–2 (S-2) is to predict the country of origin of a Twitter user by using tweets posted by the user. In S-1, our proposed systems are based on language modelling. We use language models to extract features that are later used as an input for other machine learning algorithms. We also experiment with recurrent neural networks (RNN), but these experiments showed that simpler machine learning algorithms are more successful. Our system achieves 0.658 macro F1-score and our rank is 6 th out of 19 teams in S-1 and 7 th in S-2 with 0.475 macro F1-score.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů