Fast pressure prediction along the NACA airfoil using the convolution neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43957400" target="_blank" >RIV/49777513:23520/19:43957400 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast pressure prediction along the NACA airfoil using the convolution neural network
Popis výsledku v původním jazyce
The knowledge of the pressure coefficient distribution around the airfoil body is the most important airfoil characteristic. Using the pressure distribution, lift and drag coefficients could be established. When a new profile is being designed, some of the optimisation techniques are usually used, for example, to have a maximal lift. This requires the calculation of the pressure field for many different variations of the geometry, which is very time-consuming. This contribution aims to utilize a convolution neural network (CNN) for the fast prediction of the pressure distribution around NACA airfoil. The CNN input contains a mesh point coordinates. At the CNN output the flow field, which includes density, velocity and pressure, is generated. The CNN was created using opensource software Keras and TensorFlow through the python interface. The CNN was trained on the set of 785 random profiles generated using an opensource CFD solver FlowPro.
Název v anglickém jazyce
Fast pressure prediction along the NACA airfoil using the convolution neural network
Popis výsledku anglicky
The knowledge of the pressure coefficient distribution around the airfoil body is the most important airfoil characteristic. Using the pressure distribution, lift and drag coefficients could be established. When a new profile is being designed, some of the optimisation techniques are usually used, for example, to have a maximal lift. This requires the calculation of the pressure field for many different variations of the geometry, which is very time-consuming. This contribution aims to utilize a convolution neural network (CNN) for the fast prediction of the pressure distribution around NACA airfoil. The CNN input contains a mesh point coordinates. At the CNN output the flow field, which includes density, velocity and pressure, is generated. The CNN was created using opensource software Keras and TensorFlow through the python interface. The CNN was trained on the set of 785 random profiles generated using an opensource CFD solver FlowPro.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020068" target="_blank" >TE01020068: Centrum výzkumu a experimentálního vývoje spolehlivé energetiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů