Software process anti-pattern detection in project data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43957538" target="_blank" >RIV/49777513:23520/19:43957538 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3361149.3361169" target="_blank" >http://dx.doi.org/10.1145/3361149.3361169</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3361149.3361169" target="_blank" >10.1145/3361149.3361169</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Software process anti-pattern detection in project data
Popis výsledku v původním jazyce
There is a significant amount of guidance on Project Management (PM) including software development methodologies, best practices and anti-patterns (APs). There is, however, a lack of automated way of applying this knowledge by analyzing readily available data from tools aiding in software PM, such as Application Lifecycle Management (ALM) tools. We propose a method of detecting process and PM anti-patterns in project data which can be used to warn software development teams about a potential threat to the project, or to conduct more general studies on the impact of AP occurrence on project success and product quality. We previously published a concept for the data mining and analysis toolset distinct from other research approaches and related work. Based on this toolset, we devised a formalized basis for our detection method in the form of standardized AP description template and a model for pattern operationalization over project data extracted from ALM tools. The main contribution of this paper is the general method for AP operationalization taking the description template as a starting point, discussed together with its potential limitations. We performed an initial validation of the method on data from student projects, using an AP we encountered in practice called “Collective Procrastination” which we also describe in this paper together with its detailed formal operationalization.
Název v anglickém jazyce
Software process anti-pattern detection in project data
Popis výsledku anglicky
There is a significant amount of guidance on Project Management (PM) including software development methodologies, best practices and anti-patterns (APs). There is, however, a lack of automated way of applying this knowledge by analyzing readily available data from tools aiding in software PM, such as Application Lifecycle Management (ALM) tools. We propose a method of detecting process and PM anti-patterns in project data which can be used to warn software development teams about a potential threat to the project, or to conduct more general studies on the impact of AP occurrence on project success and product quality. We previously published a concept for the data mining and analysis toolset distinct from other research approaches and related work. Based on this toolset, we devised a formalized basis for our detection method in the form of standardized AP description template and a model for pattern operationalization over project data extracted from ALM tools. The main contribution of this paper is the general method for AP operationalization taking the description template as a starting point, discussed together with its potential limitations. We performed an initial validation of the method on data from student projects, using an AP we encountered in practice called “Collective Procrastination” which we also describe in this paper together with its detailed formal operationalization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EuroPLop '19: Proceedings of the 24th European Conference on Pattern Languages of Programs
ISBN
978-1-4503-6206-1
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
1-12
Název nakladatele
Association for Computing Machinery (ACM)
Místo vydání
New York
Místo konání akce
Irsee, Německo
Datum konání akce
3. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—