Kinetic locally minimal triangulation: theoretical evaluation and combinatorial analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43957595" target="_blank" >RIV/49777513:23520/20:43957595 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00371-019-01657-y" target="_blank" >https://link.springer.com/article/10.1007/s00371-019-01657-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00371-019-01657-y" target="_blank" >10.1007/s00371-019-01657-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kinetic locally minimal triangulation: theoretical evaluation and combinatorial analysis
Popis výsledku v původním jazyce
Kinetic data structures represent an extension to ordinary data structures, where the underlying data become time-dependent (e.g., moving points). In this paper, we define the kinetic locally minimal triangulation (KLMT) as a kinetic data structure extension to the locally minimal triangulation in the Euclidean plane. We explore the general properties of this data structure in order to show what types of events need to be considered during its lifecycle; we also describe the predicates associated with these events. To describe the general kinetic features, we prove that KLMT is responsive, compact, efficient, and non-local. In the combinatorial analysis of KLMT, we briefly describe the mathematical apparatus commonly used to investigate computational complexity properties of kinetic data structures and use it to establish the bounds on the number of events processed during the lifecycle of this data structure. Finally, the obtained results are compared to the kinetic Delaunay triangulation showing that KLMT may provide some benefits over kinetic Delaunay triangulation, namely simplifying the mathematical equations that need to be computed in order to obtain the times of events.
Název v anglickém jazyce
Kinetic locally minimal triangulation: theoretical evaluation and combinatorial analysis
Popis výsledku anglicky
Kinetic data structures represent an extension to ordinary data structures, where the underlying data become time-dependent (e.g., moving points). In this paper, we define the kinetic locally minimal triangulation (KLMT) as a kinetic data structure extension to the locally minimal triangulation in the Euclidean plane. We explore the general properties of this data structure in order to show what types of events need to be considered during its lifecycle; we also describe the predicates associated with these events. To describe the general kinetic features, we prove that KLMT is responsive, compact, efficient, and non-local. In the combinatorial analysis of KLMT, we briefly describe the mathematical apparatus commonly used to investigate computational complexity properties of kinetic data structures and use it to establish the bounds on the number of events processed during the lifecycle of this data structure. Finally, the obtained results are compared to the kinetic Delaunay triangulation showing that KLMT may provide some benefits over kinetic Delaunay triangulation, namely simplifying the mathematical equations that need to be computed in order to obtain the times of events.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-07690S" target="_blank" >GA17-07690S: Metody identifikace a vizualizace tunelů pro flexibilní ligandy v dynamických proteinech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Visual Computer
ISSN
0178-2789
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
757-765
Kód UT WoS článku
000520835800008
EID výsledku v databázi Scopus
2-s2.0-85065396547