Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958590" target="_blank" >RIV/49777513:23520/20:43958590 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10040-020-02157-3" target="_blank" >https://doi.org/10.1007/s10040-020-02157-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10040-020-02157-3" target="_blank" >10.1007/s10040-020-02157-3</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia

  • Popis výsledku v původním jazyce

    Accuracy of groundwater storage (GWS) estimates from the Gravity Recovery and Climate Experiment (GRACE) mission usually has certain relations with hydrological models. This study develops a statistical selection approach to optimally estimate GWS from GRACE using two hydrological models: the Global Land Data Assimilation System (GLDAS) and the WaterGAP Global Hydrology Model (WGHM), over Tasmania, Australia. This approach involves three variables: the long-term trend, Pearson correlation coefficient (PR), and root mean square error (RMSE). The results show that in-situ observations are highly correlated with GRACE-GLDAS (PR from 0.64 to 0.85) and GRACE-WGHM (PR from 0.69 to 0.88) in eastern and northern regions of Tasmania, respectively. The interannual trends of GRACE-GLDAS estimates are generally ~1.8 times larger than those from GRACE-WGHM solutions. With regard to the standard method, the statistical selection approach can effectively improve the PR and Nash-Sutcliffe efficiency index (NSE) by 3.80 and 1.38%, respectively, over the northern region, while it decreases the RMSE by 1.07%. Similar improvements can also be detected in the eastern region. In terms of spatial distribution, the statistical approach benefits from advantages of the different models, especially to preserve the characteristics of Central Highland. Overall, according to the models, Tasmania experienced a pronounced GWS decline during the Millennium Drought (2003–2010), at a depletion rate of –2.57 mm/year, mainly due to decreasing precipitation. The increasing precipitation infiltration after 2010 lead to the GWS recovery by 3.94 mm/year. The limitation of the method is that it depends on the availability of in-situ groundwater level data.

  • Název v anglickém jazyce

    Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia

  • Popis výsledku anglicky

    Accuracy of groundwater storage (GWS) estimates from the Gravity Recovery and Climate Experiment (GRACE) mission usually has certain relations with hydrological models. This study develops a statistical selection approach to optimally estimate GWS from GRACE using two hydrological models: the Global Land Data Assimilation System (GLDAS) and the WaterGAP Global Hydrology Model (WGHM), over Tasmania, Australia. This approach involves three variables: the long-term trend, Pearson correlation coefficient (PR), and root mean square error (RMSE). The results show that in-situ observations are highly correlated with GRACE-GLDAS (PR from 0.64 to 0.85) and GRACE-WGHM (PR from 0.69 to 0.88) in eastern and northern regions of Tasmania, respectively. The interannual trends of GRACE-GLDAS estimates are generally ~1.8 times larger than those from GRACE-WGHM solutions. With regard to the standard method, the statistical selection approach can effectively improve the PR and Nash-Sutcliffe efficiency index (NSE) by 3.80 and 1.38%, respectively, over the northern region, while it decreases the RMSE by 1.07%. Similar improvements can also be detected in the eastern region. In terms of spatial distribution, the statistical approach benefits from advantages of the different models, especially to preserve the characteristics of Central Highland. Overall, according to the models, Tasmania experienced a pronounced GWS decline during the Millennium Drought (2003–2010), at a depletion rate of –2.57 mm/year, mainly due to decreasing precipitation. The increasing precipitation infiltration after 2010 lead to the GWS recovery by 3.94 mm/year. The limitation of the method is that it depends on the availability of in-situ groundwater level data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    HYDROGEOLOGY JOURNAL

  • ISSN

    1431-2174

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    17

  • Strana od-do

    1809-1825

  • Kód UT WoS článku

    000530990300002

  • EID výsledku v databázi Scopus

    2-s2.0-85084303485