Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958590" target="_blank" >RIV/49777513:23520/20:43958590 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10040-020-02157-3" target="_blank" >https://doi.org/10.1007/s10040-020-02157-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10040-020-02157-3" target="_blank" >10.1007/s10040-020-02157-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia
Popis výsledku v původním jazyce
Accuracy of groundwater storage (GWS) estimates from the Gravity Recovery and Climate Experiment (GRACE) mission usually has certain relations with hydrological models. This study develops a statistical selection approach to optimally estimate GWS from GRACE using two hydrological models: the Global Land Data Assimilation System (GLDAS) and the WaterGAP Global Hydrology Model (WGHM), over Tasmania, Australia. This approach involves three variables: the long-term trend, Pearson correlation coefficient (PR), and root mean square error (RMSE). The results show that in-situ observations are highly correlated with GRACE-GLDAS (PR from 0.64 to 0.85) and GRACE-WGHM (PR from 0.69 to 0.88) in eastern and northern regions of Tasmania, respectively. The interannual trends of GRACE-GLDAS estimates are generally ~1.8 times larger than those from GRACE-WGHM solutions. With regard to the standard method, the statistical selection approach can effectively improve the PR and Nash-Sutcliffe efficiency index (NSE) by 3.80 and 1.38%, respectively, over the northern region, while it decreases the RMSE by 1.07%. Similar improvements can also be detected in the eastern region. In terms of spatial distribution, the statistical approach benefits from advantages of the different models, especially to preserve the characteristics of Central Highland. Overall, according to the models, Tasmania experienced a pronounced GWS decline during the Millennium Drought (2003–2010), at a depletion rate of –2.57 mm/year, mainly due to decreasing precipitation. The increasing precipitation infiltration after 2010 lead to the GWS recovery by 3.94 mm/year. The limitation of the method is that it depends on the availability of in-situ groundwater level data.
Název v anglickém jazyce
Improving regional groundwater storage estimates from GRACE and global hydrological models over Tasmania, Australia
Popis výsledku anglicky
Accuracy of groundwater storage (GWS) estimates from the Gravity Recovery and Climate Experiment (GRACE) mission usually has certain relations with hydrological models. This study develops a statistical selection approach to optimally estimate GWS from GRACE using two hydrological models: the Global Land Data Assimilation System (GLDAS) and the WaterGAP Global Hydrology Model (WGHM), over Tasmania, Australia. This approach involves three variables: the long-term trend, Pearson correlation coefficient (PR), and root mean square error (RMSE). The results show that in-situ observations are highly correlated with GRACE-GLDAS (PR from 0.64 to 0.85) and GRACE-WGHM (PR from 0.69 to 0.88) in eastern and northern regions of Tasmania, respectively. The interannual trends of GRACE-GLDAS estimates are generally ~1.8 times larger than those from GRACE-WGHM solutions. With regard to the standard method, the statistical selection approach can effectively improve the PR and Nash-Sutcliffe efficiency index (NSE) by 3.80 and 1.38%, respectively, over the northern region, while it decreases the RMSE by 1.07%. Similar improvements can also be detected in the eastern region. In terms of spatial distribution, the statistical approach benefits from advantages of the different models, especially to preserve the characteristics of Central Highland. Overall, according to the models, Tasmania experienced a pronounced GWS decline during the Millennium Drought (2003–2010), at a depletion rate of –2.57 mm/year, mainly due to decreasing precipitation. The increasing precipitation infiltration after 2010 lead to the GWS recovery by 3.94 mm/year. The limitation of the method is that it depends on the availability of in-situ groundwater level data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
HYDROGEOLOGY JOURNAL
ISSN
1431-2174
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
1809-1825
Kód UT WoS článku
000530990300002
EID výsledku v databázi Scopus
2-s2.0-85084303485