Homogenization and numerical modelling of poroelastic materials with self-contact in the microstructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43958663" target="_blank" >RIV/49777513:23520/20:43958663 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0045794919300264" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0045794919300264</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2019.06.003" target="_blank" >10.1016/j.compstruc.2019.06.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Homogenization and numerical modelling of poroelastic materials with self-contact in the microstructure
Popis výsledku v původním jazyce
We present a two-scale homogenization-based computational model of porous elastic materials subject to external loads inducing the self-contact interaction at the pore level. Microstructures under consideration are constituted as periodic lattices generated by a representative cell consisting of a solid skeleton and a pore. On its surface, the unilateral frictionless contact appears when the porous material is deformed. We focus on microstructures with rigid inclusions whereby the contact process involves opposing surfaces on the rigid and the compliant skeleton parts. A macroscopic model is derived using the periodic unfolding homogenization and the method of oscillating test functions. An efficient algorithm for the two-scale computational analysis is proposed for the numerical model obtained using the finite element discretization of the homogenized model. For this, a sequential linearization of the two-scale elasticity problem leads to the consistent effective elasticity tensor yielding consistent stiffness matrices of the macroscopic incremental formulation. The micro-level contact problem attains the form of a nonsmooth equation solved using the semi-smooth Newton method without any regularization, or problem relaxation. Numerical examples of two-dimensional deforming structures are presented as a proof of the concept. The proposed modelling approach can be extended to treat self-contact in structures subject to finite deformation.
Název v anglickém jazyce
Homogenization and numerical modelling of poroelastic materials with self-contact in the microstructure
Popis výsledku anglicky
We present a two-scale homogenization-based computational model of porous elastic materials subject to external loads inducing the self-contact interaction at the pore level. Microstructures under consideration are constituted as periodic lattices generated by a representative cell consisting of a solid skeleton and a pore. On its surface, the unilateral frictionless contact appears when the porous material is deformed. We focus on microstructures with rigid inclusions whereby the contact process involves opposing surfaces on the rigid and the compliant skeleton parts. A macroscopic model is derived using the periodic unfolding homogenization and the method of oscillating test functions. An efficient algorithm for the two-scale computational analysis is proposed for the numerical model obtained using the finite element discretization of the homogenized model. For this, a sequential linearization of the two-scale elasticity problem leads to the consistent effective elasticity tensor yielding consistent stiffness matrices of the macroscopic incremental formulation. The micro-level contact problem attains the form of a nonsmooth equation solved using the semi-smooth Newton method without any regularization, or problem relaxation. Numerical examples of two-dimensional deforming structures are presented as a proof of the concept. The proposed modelling approach can be extended to treat self-contact in structures subject to finite deformation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & STRUCTURES
ISSN
0045-7949
e-ISSN
—
Svazek periodika
230
Číslo periodika v rámci svazku
1 April 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000518666100006
EID výsledku v databázi Scopus
2-s2.0-85078156223