Lipreading with LipsID
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959761" target="_blank" >RIV/49777513:23520/20:43959761 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-60276-5_18" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-60276-5_18</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60276-5_18" target="_blank" >10.1007/978-3-030-60276-5_18</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lipreading with LipsID
Popis výsledku v původním jazyce
This paper presents an approach for adaptation of the current visual speech recognition systems. The adaptation technique is based on LipsID features. These features represent a processed area of lips ROI. The features are extracted in a classification task by neural network pre-trained on the dataset-specific to the lip-reading system used for visual speech recognition. The training procedure for LipsID implements ArcFace loss to separate different speakers in the dataset and to provide distinctive features for every one of them. The network uses convolutional layers to extract features from input sequences of speaker images and is designed to take the same input as the lipreading system. Parallel processing of input sequence by LipsID network and lipreading network is followed by a combination of both feature sets and final recognition by Connectionist Temporal Classification (CTC) mechanism. This paper presents results from experiments with the LipNet network by re-implementing the system and comparing it with and without LipsID features. The results show a promising path for future experiments and other systems. The training and testing process of neural networks used in this work utilizes Tensorflow/Keras implementations.
Název v anglickém jazyce
Lipreading with LipsID
Popis výsledku anglicky
This paper presents an approach for adaptation of the current visual speech recognition systems. The adaptation technique is based on LipsID features. These features represent a processed area of lips ROI. The features are extracted in a classification task by neural network pre-trained on the dataset-specific to the lip-reading system used for visual speech recognition. The training procedure for LipsID implements ArcFace loss to separate different speakers in the dataset and to provide distinctive features for every one of them. The network uses convolutional layers to extract features from input sequences of speaker images and is designed to take the same input as the lipreading system. Parallel processing of input sequence by LipsID network and lipreading network is followed by a combination of both feature sets and final recognition by Connectionist Temporal Classification (CTC) mechanism. This paper presents results from experiments with the LipNet network by re-implementing the system and comparing it with and without LipsID features. The results show a promising path for future experiments and other systems. The training and testing process of neural networks used in this work utilizes Tensorflow/Keras implementations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LTARF18017" target="_blank" >LTARF18017: AMIR – Multimodální rozhraní založené na gestech a mluvené i znakové řeči pro ovládání asistivního mobilního informačního robota</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
22nd International Conference, SPECOM 2020, St. Petersburg, Russia, October 7–9, 2020, Proceedings
ISBN
978-3-030-60275-8
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
8
Strana od-do
176-183
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
St. Petersburg, Russia
Datum konání akce
7. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—