Increasing the Accuracy of the ASR System by Prolonging Voiceless Phonemes in the Speech of Patients Using the Electrolarynx
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F20%3A43959812" target="_blank" >RIV/49777513:23520/20:43959812 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-60276-5_54" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-60276-5_54</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-60276-5_54" target="_blank" >10.1007/978-3-030-60276-5_54</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Increasing the Accuracy of the ASR System by Prolonging Voiceless Phonemes in the Speech of Patients Using the Electrolarynx
Popis výsledku v původním jazyce
Patients who have undergone total laryngectomy and use electrolarynx for voice production suffer from poor intelligibility. It may lead in many cases to fear of speaking to strangers, even over the phone. Automatic Speech Recognition (ASR) systems could help patients overcome this problem in many ways. Unfortunately, even state-of-the-art ASR systems cannot provide results comparable to those of conventional speakers. The problem is mainly caused by the similarity between voiced and unvoiced phoneme pairs. In many cases, a language model can help to solve the issue, but only if the word context is sufficiently long. Therefore adjustment of acoustic data and/or acoustic model is necessary to increase recognition accuracy. In this paper, we propose voiceless phonemes elongation to improve recognition accuracy and enrich the ASR system with a model that takes this elongation into account. The idea of elongation is verified on a set of ASR experiments with artificially elongated voiceless phonemes. To enriching the ASR system, the DNN model for rescoring lattices based on phoneme duration is proposed. The new system is compared with a standard ASR. It is also verified that the ASR system created using elongated synthetic data can successfully recognize the actual elongated data pronounced by the real speaker.
Název v anglickém jazyce
Increasing the Accuracy of the ASR System by Prolonging Voiceless Phonemes in the Speech of Patients Using the Electrolarynx
Popis výsledku anglicky
Patients who have undergone total laryngectomy and use electrolarynx for voice production suffer from poor intelligibility. It may lead in many cases to fear of speaking to strangers, even over the phone. Automatic Speech Recognition (ASR) systems could help patients overcome this problem in many ways. Unfortunately, even state-of-the-art ASR systems cannot provide results comparable to those of conventional speakers. The problem is mainly caused by the similarity between voiced and unvoiced phoneme pairs. In many cases, a language model can help to solve the issue, but only if the word context is sufficiently long. Therefore adjustment of acoustic data and/or acoustic model is necessary to increase recognition accuracy. In this paper, we propose voiceless phonemes elongation to improve recognition accuracy and enrich the ASR system with a model that takes this elongation into account. The idea of elongation is verified on a set of ASR experiments with artificially elongated voiceless phonemes. To enriching the ASR system, the DNN model for rescoring lattices based on phoneme duration is proposed. The new system is compared with a standard ASR. It is also verified that the ASR system created using elongated synthetic data can successfully recognize the actual elongated data pronounced by the real speaker.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000024" target="_blank" >TN01000024: Národní centrum kompetence - Kybernetika a umělá inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
22nd International Conference, SPECOM 2020, St. Petersburg, Russia, October 7–9, 2020, Proceedings
ISBN
978-3-030-60275-8
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
10
Strana od-do
562-571
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
St. Petersburg; Russian Federation
Datum konání akce
7. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—