Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43959944" target="_blank" >RIV/49777513:23520/21:43959944 - isvavai.cz</a>
Výsledek na webu
<a href="https://reader.elsevier.com/reader/sd/pii/S0045794920302078?token=5AF1E9BA6484C69F47C60DA039F5F60CCFE9CF14DFBADBD1D00B8499AE57761FFEC7FBA9B0ABCC819681433A004C0F6A&originRegion=eu-west-1&originCreation=20210608100631" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0045794920302078?token=5AF1E9BA6484C69F47C60DA039F5F60CCFE9CF14DFBADBD1D00B8499AE57761FFEC7FBA9B0ABCC819681433A004C0F6A&originRegion=eu-west-1&originCreation=20210608100631</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2020.106404" target="_blank" >10.1016/j.compstruc.2020.106404</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model
Popis výsledku v původním jazyce
We introduce a new mathematical model enabling to describe tissue perfusion whereby the microstructure is respected by virtue of effective model parameters. The proposed model entitled Biot-Darcy-multi-Brinkman (BDmB) is an extension of the recently derived Biot-Darcy-Brinkman model. The BDmB model enables to describe parallel flows in several mutually disconnected mesoscopic channels immersed in the mesoscopic poroelastic matrix where the flow is governed by the Darcy model. It is derived by the two-level homogenization of the microscopic fluid-structure interaction problem to respect the hierarchical structure of the two-phase medium. The second-level upscaling is explained, providing the macroscopic homogenized coefficients and the model equations. Boundary conditions are discussed. The model has been implemented in the finite element code SfePy which is well-suited for computational homogenization and solving coupled problems. It describes flows and deformations in the liver tissue with nearly periodic mesoscopic structure. Two mesoscopic channels are considered to represent the portal and hepatic vasculatures, while the matrix represents the sinusoidal porosity. Numerical simulations of stationary and nonstationary problems are reported with applications to the liver perfusion. Using numerical tests, the homogenized BDmB model is validated against direct simulations of heterogeneous mesoscopic structures.
Název v anglickém jazyce
Multiscale modelling and simulations of tissue perfusion using the Biot-Darcy-Brinkman model
Popis výsledku anglicky
We introduce a new mathematical model enabling to describe tissue perfusion whereby the microstructure is respected by virtue of effective model parameters. The proposed model entitled Biot-Darcy-multi-Brinkman (BDmB) is an extension of the recently derived Biot-Darcy-Brinkman model. The BDmB model enables to describe parallel flows in several mutually disconnected mesoscopic channels immersed in the mesoscopic poroelastic matrix where the flow is governed by the Darcy model. It is derived by the two-level homogenization of the microscopic fluid-structure interaction problem to respect the hierarchical structure of the two-phase medium. The second-level upscaling is explained, providing the macroscopic homogenized coefficients and the model equations. Boundary conditions are discussed. The model has been implemented in the finite element code SfePy which is well-suited for computational homogenization and solving coupled problems. It describes flows and deformations in the liver tissue with nearly periodic mesoscopic structure. Two mesoscopic channels are considered to represent the portal and hepatic vasculatures, while the matrix represents the sinusoidal porosity. Numerical simulations of stationary and nonstationary problems are reported with applications to the liver perfusion. Using numerical tests, the homogenized BDmB model is validated against direct simulations of heterogeneous mesoscopic structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS & STRUCTURES
ISSN
0045-7949
e-ISSN
—
Svazek periodika
251
Číslo periodika v rámci svazku
15 July 2021
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
000707769900001
EID výsledku v databázi Scopus
2-s2.0-85106295134