Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961333" target="_blank" >RIV/49777513:23520/21:43961333 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4952" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4952</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/fld.4952" target="_blank" >10.1002/fld.4952</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations

  • Popis výsledku v původním jazyce

    We deal with numerical solution of the incompressible Navier-Stokes equations discretized using the isogeometric analysis (IgA) approach. Similarly to finite elements, the discretization leads to sparse nonsymmetric saddle-point linear systems. The IgA discretization basis has several specific properties different from standard FEM basis, most importantly a higher interelement continuity leading to denser matrices. We are interested in iterative solution of the resulting linear systems using a Krylov subspace method (GMRES) preconditioned with several state-of-the-art block preconditioners. We compare the efficiency of the ideal versions of these preconditioners for three model problems (for both steady and unsteady flow in two and three dimensions) and investigate their properties with focus on the IgA specifics, that is, various degree and continuity of the discretization basis. Our experiments show that the block preconditioners can be successfully applied to the systems arising from high continuity IgA, moreover, that the high continuity can bring some benefits in this context. For example, some of the preconditioners, whose convergence is h-dependent in the steady case, seem to be less sensitive to the mesh refinement for higher continuity discretizations. In the unsteady case, we generally get faster convergence for higher continuity than for C0 continuous discretizations of the same degree for most of the preconditioners.

  • Název v anglickém jazyce

    A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations

  • Popis výsledku anglicky

    We deal with numerical solution of the incompressible Navier-Stokes equations discretized using the isogeometric analysis (IgA) approach. Similarly to finite elements, the discretization leads to sparse nonsymmetric saddle-point linear systems. The IgA discretization basis has several specific properties different from standard FEM basis, most importantly a higher interelement continuity leading to denser matrices. We are interested in iterative solution of the resulting linear systems using a Krylov subspace method (GMRES) preconditioned with several state-of-the-art block preconditioners. We compare the efficiency of the ideal versions of these preconditioners for three model problems (for both steady and unsteady flow in two and three dimensions) and investigate their properties with focus on the IgA specifics, that is, various degree and continuity of the discretization basis. Our experiments show that the block preconditioners can be successfully applied to the systems arising from high continuity IgA, moreover, that the high continuity can bring some benefits in this context. For example, some of the preconditioners, whose convergence is h-dependent in the steady case, seem to be less sensitive to the mesh refinement for higher continuity discretizations. In the unsteady case, we generally get faster convergence for higher continuity than for C0 continuous discretizations of the same degree for most of the preconditioners.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04006S" target="_blank" >GA19-04006S: Moderní geometricko-numerické metody v simulaci nestlačitelného turbulentního proudění pro reálné úlohy velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

  • ISSN

    0271-2091

  • e-ISSN

  • Svazek periodika

    93

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    1788-1815

  • Kód UT WoS článku

    000610870500001

  • EID výsledku v databázi Scopus

    2-s2.0-85099655860