A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961333" target="_blank" >RIV/49777513:23520/21:43961333 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4952" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.4952</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/fld.4952" target="_blank" >10.1002/fld.4952</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations
Popis výsledku v původním jazyce
We deal with numerical solution of the incompressible Navier-Stokes equations discretized using the isogeometric analysis (IgA) approach. Similarly to finite elements, the discretization leads to sparse nonsymmetric saddle-point linear systems. The IgA discretization basis has several specific properties different from standard FEM basis, most importantly a higher interelement continuity leading to denser matrices. We are interested in iterative solution of the resulting linear systems using a Krylov subspace method (GMRES) preconditioned with several state-of-the-art block preconditioners. We compare the efficiency of the ideal versions of these preconditioners for three model problems (for both steady and unsteady flow in two and three dimensions) and investigate their properties with focus on the IgA specifics, that is, various degree and continuity of the discretization basis. Our experiments show that the block preconditioners can be successfully applied to the systems arising from high continuity IgA, moreover, that the high continuity can bring some benefits in this context. For example, some of the preconditioners, whose convergence is h-dependent in the steady case, seem to be less sensitive to the mesh refinement for higher continuity discretizations. In the unsteady case, we generally get faster convergence for higher continuity than for C0 continuous discretizations of the same degree for most of the preconditioners.
Název v anglickém jazyce
A comparison of block preconditioners for isogeometric analysis discretizations of the incompressible Navier-Stokes equations
Popis výsledku anglicky
We deal with numerical solution of the incompressible Navier-Stokes equations discretized using the isogeometric analysis (IgA) approach. Similarly to finite elements, the discretization leads to sparse nonsymmetric saddle-point linear systems. The IgA discretization basis has several specific properties different from standard FEM basis, most importantly a higher interelement continuity leading to denser matrices. We are interested in iterative solution of the resulting linear systems using a Krylov subspace method (GMRES) preconditioned with several state-of-the-art block preconditioners. We compare the efficiency of the ideal versions of these preconditioners for three model problems (for both steady and unsteady flow in two and three dimensions) and investigate their properties with focus on the IgA specifics, that is, various degree and continuity of the discretization basis. Our experiments show that the block preconditioners can be successfully applied to the systems arising from high continuity IgA, moreover, that the high continuity can bring some benefits in this context. For example, some of the preconditioners, whose convergence is h-dependent in the steady case, seem to be less sensitive to the mesh refinement for higher continuity discretizations. In the unsteady case, we generally get faster convergence for higher continuity than for C0 continuous discretizations of the same degree for most of the preconditioners.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04006S" target="_blank" >GA19-04006S: Moderní geometricko-numerické metody v simulaci nestlačitelného turbulentního proudění pro reálné úlohy velkého rozsahu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
ISSN
0271-2091
e-ISSN
—
Svazek periodika
93
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
1788-1815
Kód UT WoS článku
000610870500001
EID výsledku v databázi Scopus
2-s2.0-85099655860