Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962131" target="_blank" >RIV/49777513:23520/21:43962131 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10712-021-09648-2" target="_blank" >https://link.springer.com/article/10.1007/s10712-021-09648-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10712-021-09648-2" target="_blank" >10.1007/s10712-021-09648-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean

  • Popis výsledku v původním jazyce

    Since marine seismic studies are relatively sparse and unevenly distributed, detailed tomographic images of the Moho geometry under large parts of the world’s oceans and marginal seas are not yet available. Marine gravity data is, therefore, often used to detect the Moho depth in these regions. Alternatively, Airy’s isostatic theory can be applied for this purpose. In this study, we compare different isostatic and gravimetric methods for a Moho recovery under the oceanic crust and continental margins, particularly focusing on a numerical performance of Airy, Vening Meinesz–Moritz (VMM), direct gravity inversion, and generalized (for the Earth’s spherical approximation) Parker–Oldenburg methods. Numerical experiments are conducted to estimate the Moho depth beneath the Indian Ocean. Results reveal that, among these investigated methods, the VMM model is probably the most suitable for a gravimetric Moho recovery beneath the oceanic crust and continental margins, when taking into consideration the lithospheric mantle density information. This method could to some extent model realistically a Moho geometry beneath mid-oceanic spreading ridges, oceanic subductions, most of oceanic volcanic formations, and marine sediment deposits. Nonetheless, this model still cannot fully reproduce a gradual Moho deepening caused by a conductive cooling and a subsequent isostatic rebalance of the oceanic lithosphere, which can functionally be described by a Moho deepening with the increasing ocean-floor age. Results also indicate that the Airy method typically overestimates the Moho depth under oceanic volcanic formations, while the direct gravity inversion and generalized Parker–Oldenburg methods could not reproduce more detailed features in the Moho geometry. Since Pratt’s theory better describes a large-scale isostatic mechanism of the oceanic lithosphere by means of compensation density variations, but does not account for additional changes in compensation depth (i.e., Moho depth) that are caused by these density changes, we tested a possibility of combining Pratt and Airy’s isostatic theories in order to estimate the Moho depth under the oceanic crust. Even this combined model cannot fully reproduce a gradual Moho deepening with the increasing ocean-floor age.

  • Název v anglickém jazyce

    Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean

  • Popis výsledku anglicky

    Since marine seismic studies are relatively sparse and unevenly distributed, detailed tomographic images of the Moho geometry under large parts of the world’s oceans and marginal seas are not yet available. Marine gravity data is, therefore, often used to detect the Moho depth in these regions. Alternatively, Airy’s isostatic theory can be applied for this purpose. In this study, we compare different isostatic and gravimetric methods for a Moho recovery under the oceanic crust and continental margins, particularly focusing on a numerical performance of Airy, Vening Meinesz–Moritz (VMM), direct gravity inversion, and generalized (for the Earth’s spherical approximation) Parker–Oldenburg methods. Numerical experiments are conducted to estimate the Moho depth beneath the Indian Ocean. Results reveal that, among these investigated methods, the VMM model is probably the most suitable for a gravimetric Moho recovery beneath the oceanic crust and continental margins, when taking into consideration the lithospheric mantle density information. This method could to some extent model realistically a Moho geometry beneath mid-oceanic spreading ridges, oceanic subductions, most of oceanic volcanic formations, and marine sediment deposits. Nonetheless, this model still cannot fully reproduce a gradual Moho deepening caused by a conductive cooling and a subsequent isostatic rebalance of the oceanic lithosphere, which can functionally be described by a Moho deepening with the increasing ocean-floor age. Results also indicate that the Airy method typically overestimates the Moho depth under oceanic volcanic formations, while the direct gravity inversion and generalized Parker–Oldenburg methods could not reproduce more detailed features in the Moho geometry. Since Pratt’s theory better describes a large-scale isostatic mechanism of the oceanic lithosphere by means of compensation density variations, but does not account for additional changes in compensation depth (i.e., Moho depth) that are caused by these density changes, we tested a possibility of combining Pratt and Airy’s isostatic theories in order to estimate the Moho depth under the oceanic crust. Even this combined model cannot fully reproduce a gradual Moho deepening with the increasing ocean-floor age.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Surveys in Geophysics

  • ISSN

    0169-3298

  • e-ISSN

  • Svazek periodika

    42

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    59

  • Strana od-do

    839-897

  • Kód UT WoS článku

    000664000900001

  • EID výsledku v databázi Scopus

    2-s2.0-85111378692