Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962131" target="_blank" >RIV/49777513:23520/21:43962131 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10712-021-09648-2" target="_blank" >https://link.springer.com/article/10.1007/s10712-021-09648-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10712-021-09648-2" target="_blank" >10.1007/s10712-021-09648-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean
Popis výsledku v původním jazyce
Since marine seismic studies are relatively sparse and unevenly distributed, detailed tomographic images of the Moho geometry under large parts of the world’s oceans and marginal seas are not yet available. Marine gravity data is, therefore, often used to detect the Moho depth in these regions. Alternatively, Airy’s isostatic theory can be applied for this purpose. In this study, we compare different isostatic and gravimetric methods for a Moho recovery under the oceanic crust and continental margins, particularly focusing on a numerical performance of Airy, Vening Meinesz–Moritz (VMM), direct gravity inversion, and generalized (for the Earth’s spherical approximation) Parker–Oldenburg methods. Numerical experiments are conducted to estimate the Moho depth beneath the Indian Ocean. Results reveal that, among these investigated methods, the VMM model is probably the most suitable for a gravimetric Moho recovery beneath the oceanic crust and continental margins, when taking into consideration the lithospheric mantle density information. This method could to some extent model realistically a Moho geometry beneath mid-oceanic spreading ridges, oceanic subductions, most of oceanic volcanic formations, and marine sediment deposits. Nonetheless, this model still cannot fully reproduce a gradual Moho deepening caused by a conductive cooling and a subsequent isostatic rebalance of the oceanic lithosphere, which can functionally be described by a Moho deepening with the increasing ocean-floor age. Results also indicate that the Airy method typically overestimates the Moho depth under oceanic volcanic formations, while the direct gravity inversion and generalized Parker–Oldenburg methods could not reproduce more detailed features in the Moho geometry. Since Pratt’s theory better describes a large-scale isostatic mechanism of the oceanic lithosphere by means of compensation density variations, but does not account for additional changes in compensation depth (i.e., Moho depth) that are caused by these density changes, we tested a possibility of combining Pratt and Airy’s isostatic theories in order to estimate the Moho depth under the oceanic crust. Even this combined model cannot fully reproduce a gradual Moho deepening with the increasing ocean-floor age.
Název v anglickém jazyce
Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean
Popis výsledku anglicky
Since marine seismic studies are relatively sparse and unevenly distributed, detailed tomographic images of the Moho geometry under large parts of the world’s oceans and marginal seas are not yet available. Marine gravity data is, therefore, often used to detect the Moho depth in these regions. Alternatively, Airy’s isostatic theory can be applied for this purpose. In this study, we compare different isostatic and gravimetric methods for a Moho recovery under the oceanic crust and continental margins, particularly focusing on a numerical performance of Airy, Vening Meinesz–Moritz (VMM), direct gravity inversion, and generalized (for the Earth’s spherical approximation) Parker–Oldenburg methods. Numerical experiments are conducted to estimate the Moho depth beneath the Indian Ocean. Results reveal that, among these investigated methods, the VMM model is probably the most suitable for a gravimetric Moho recovery beneath the oceanic crust and continental margins, when taking into consideration the lithospheric mantle density information. This method could to some extent model realistically a Moho geometry beneath mid-oceanic spreading ridges, oceanic subductions, most of oceanic volcanic formations, and marine sediment deposits. Nonetheless, this model still cannot fully reproduce a gradual Moho deepening caused by a conductive cooling and a subsequent isostatic rebalance of the oceanic lithosphere, which can functionally be described by a Moho deepening with the increasing ocean-floor age. Results also indicate that the Airy method typically overestimates the Moho depth under oceanic volcanic formations, while the direct gravity inversion and generalized Parker–Oldenburg methods could not reproduce more detailed features in the Moho geometry. Since Pratt’s theory better describes a large-scale isostatic mechanism of the oceanic lithosphere by means of compensation density variations, but does not account for additional changes in compensation depth (i.e., Moho depth) that are caused by these density changes, we tested a possibility of combining Pratt and Airy’s isostatic theories in order to estimate the Moho depth under the oceanic crust. Even this combined model cannot fully reproduce a gradual Moho deepening with the increasing ocean-floor age.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-13713S" target="_blank" >GA21-13713S: Odhady nejistot pro integrální transformace v geodézii</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Surveys in Geophysics
ISSN
0169-3298
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
59
Strana od-do
839-897
Kód UT WoS článku
000664000900001
EID výsledku v databázi Scopus
2-s2.0-85111378692