Applying EEND Diarization to Telephone Recordings from a Call Center
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962459" target="_blank" >RIV/49777513:23520/21:43962459 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007%2F978-3-030-87802-3_72" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-030-87802-3_72</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-87802-3_72" target="_blank" >10.1007/978-3-030-87802-3_72</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applying EEND Diarization to Telephone Recordings from a Call Center
Popis výsledku v původním jazyce
In this paper, we focus on the issue of speaker diarization of data from a real call center. We have previously proposed a specialized solution to the problem, which employed additional knowledge about the identities of the phone operators (in our case, the language counselors from the Language Consulting Center), thus improving performance over the baseline. But a recent end-to-end diarization method, EEND, has since proven very successful on other data and was shown to surpass the previous state of the art in the field. Thus, we chose to compare this new method with our own previous approach. Using an existing implementation of the EEND method (adapted using a small amount of the target data from the Language Consulting Center), we successfully surpass the performance of our previous approach (17.42% vs. 19.39% DER), without the need for any additional information about speaker identities. The majority of the remaining diarization error of the EEND system is due to incorrect decisions between speech and silence, rather than speaker confusion. For comparison, we also show the results of a more standard diarization approach, represented by the method used in the Kaldi toolkit.
Název v anglickém jazyce
Applying EEND Diarization to Telephone Recordings from a Call Center
Popis výsledku anglicky
In this paper, we focus on the issue of speaker diarization of data from a real call center. We have previously proposed a specialized solution to the problem, which employed additional knowledge about the identities of the phone operators (in our case, the language counselors from the Language Consulting Center), thus improving performance over the baseline. But a recent end-to-end diarization method, EEND, has since proven very successful on other data and was shown to surpass the previous state of the art in the field. Thus, we chose to compare this new method with our own previous approach. Using an existing implementation of the EEND method (adapted using a small amount of the target data from the Language Consulting Center), we successfully surpass the performance of our previous approach (17.42% vs. 19.39% DER), without the need for any additional information about speaker identities. The majority of the remaining diarization error of the EEND system is due to incorrect decisions between speech and silence, rather than speaker confusion. For comparison, we also show the results of a more standard diarization approach, represented by the method used in the Kaldi toolkit.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018101" target="_blank" >LM2018101: Digitální výzkumná infrastruktura pro jazykové technologie, umění a humanitní vědy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
23rd International Conference, SPECOM 2021, St. Petersburg, Russia, September 27–30, 2021, Proceedings
ISBN
978-3-030-87801-6
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
11
Strana od-do
807-817
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
St. Petersburg, Russia (virtual)
Datum konání akce
27. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—