Neural Criticality: Validation of Convolutional Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962812" target="_blank" >RIV/49777513:23520/21:43962812 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2808/Paper_36.pdf" target="_blank" >http://ceur-ws.org/Vol-2808/Paper_36.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural Criticality: Validation of Convolutional Neural Networks
Popis výsledku v původním jazyce
The black-box behavior of Convolutional Neural Networks is one of the biggest obstacles to the development of a standardized validation process. Methods for analyzing and validating neural networks currently rely on approaches and metrics provided by the scientific community without considering functional safety requirements. However, automotive norms, such as ISO26262 and ISO/PAS21448, do require a comprehensive knowledge of the system and of the working environment in which the network will be deployed. In order to gain such a knowledge and mitigate the natural uncertainty of probabilistic models, we focused on investigating the influence of filter weights on the classification confidence in Single Point Of Failure fashion. We laid the theoretical foundation of a method called the Neurons’ Criticality Analysis. This method, as described in this article, helps evaluate the criticality of the tested network and choose related plausibility mechanism. Copyright © 2021, for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
Název v anglickém jazyce
Neural Criticality: Validation of Convolutional Neural Networks
Popis výsledku anglicky
The black-box behavior of Convolutional Neural Networks is one of the biggest obstacles to the development of a standardized validation process. Methods for analyzing and validating neural networks currently rely on approaches and metrics provided by the scientific community without considering functional safety requirements. However, automotive norms, such as ISO26262 and ISO/PAS21448, do require a comprehensive knowledge of the system and of the working environment in which the network will be deployed. In order to gain such a knowledge and mitigate the natural uncertainty of probabilistic models, we focused on investigating the influence of filter weights on the classification confidence in Single Point Of Failure fashion. We laid the theoretical foundation of a method called the Neurons’ Criticality Analysis. This method, as described in this article, helps evaluate the criticality of the tested network and choose related plausibility mechanism. Copyright © 2021, for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CEUR Workshop Proceedings
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
CEUR-WS
Místo vydání
Neuveden
Místo konání akce
Virtual, Online
Datum konání akce
8. 2. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—