Overview of LifeCLEF 2021: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43962884" target="_blank" >RIV/49777513:23520/21:43962884 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-85251-1_24" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-85251-1_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-85251-1_24" target="_blank" >10.1007/978-3-030-85251-1_24</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Overview of LifeCLEF 2021: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction
Popis výsledku v původním jazyce
Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants and animals is hindering the aggregation of new data and knowledge. Identifying and naming living plants or animals is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2021 edition proposes four data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: cross-domain plant identification based on herbarium sheets, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction of species, and (iv) SnakeCLEF: Automatic Snake Species Identification with Country-Level Focus.
Název v anglickém jazyce
Overview of LifeCLEF 2021: An Evaluation of Machine-Learning Based Species Identification and Species Distribution Prediction
Popis výsledku anglicky
Building accurate knowledge of the identity, the geographic distribution and the evolution of species is essential for the sustainable development of humanity, as well as for biodiversity conservation. However, the difficulty of identifying plants and animals is hindering the aggregation of new data and knowledge. Identifying and naming living plants or animals is almost impossible for the general public and is often difficult even for professionals and naturalists. Bridging this gap is a key step towards enabling effective biodiversity monitoring systems. The LifeCLEF campaign, presented in this paper, has been promoting and evaluating advances in this domain since 2011. The 2021 edition proposes four data-oriented challenges related to the identification and prediction of biodiversity: (i) PlantCLEF: cross-domain plant identification based on herbarium sheets, (ii) BirdCLEF: bird species recognition in audio soundscapes, (iii) GeoLifeCLEF: remote sensing based prediction of species, and (iv) SnakeCLEF: Automatic Snake Species Identification with Country-Level Focus.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Experimental IR Meets Multilinguality, Multimodality, and Interaction 12th International Conference of the CLEF Association, CLEF 2021, Virtual Event, September 21–24, 2021, Proceedings
ISBN
978-3-030-85250-4
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
23
Strana od-do
371-393
Název nakladatele
Springer Nature
Místo vydání
Cham
Místo konání akce
Virtual, Online
Datum konání akce
21. 9. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—