Fluid-structure interaction algorithm for an elastic structure with large deformations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963411" target="_blank" >RIV/49777513:23520/21:43963411 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11025/46199" target="_blank" >http://hdl.handle.net/11025/46199</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fluid-structure interaction algorithm for an elastic structure with large deformations
Popis výsledku v původním jazyce
This contribution introduces a fluid-structure interaction (FSI) algorithm where the structure is considered elastic. One of the main requirements for the FSI algorithm is a high level of modularity, meaning that the fluid and structure solvers are independent of each other. For this reason, a partitioned approach was adopted with the option of either weak or strong coupling. The fluid dynamics is simulated using the discontinuous Galerkin finite element method whereas the structure dynamics is simulated using the continuous Galerkin finite element method. The structure is modelled by a non-linear mathematical model which allows for large deformations. The meshes for both the fluid and the structure are non-uniform and mutually non-conforming, in other words the meshes do not need to align on the fluid-solid interface. This allows for simple and flexible generation of meshes. The transfer of data between the fluid and the structure is carried out by interpolation with radial basis functions. The fluid and structure solvers are validated independently on a couple of benchmarks and the coupled FSI solver is tested on the well-known Turek-Hron benchmark.
Název v anglickém jazyce
Fluid-structure interaction algorithm for an elastic structure with large deformations
Popis výsledku anglicky
This contribution introduces a fluid-structure interaction (FSI) algorithm where the structure is considered elastic. One of the main requirements for the FSI algorithm is a high level of modularity, meaning that the fluid and structure solvers are independent of each other. For this reason, a partitioned approach was adopted with the option of either weak or strong coupling. The fluid dynamics is simulated using the discontinuous Galerkin finite element method whereas the structure dynamics is simulated using the continuous Galerkin finite element method. The structure is modelled by a non-linear mathematical model which allows for large deformations. The meshes for both the fluid and the structure are non-uniform and mutually non-conforming, in other words the meshes do not need to align on the fluid-solid interface. This allows for simple and flexible generation of meshes. The transfer of data between the fluid and the structure is carried out by interpolation with radial basis functions. The fluid and structure solvers are validated independently on a couple of benchmarks and the coupled FSI solver is tested on the well-known Turek-Hron benchmark.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-26779S" target="_blank" >GA20-26779S: Výzkum nestabilit dynamického stall flutteru a jejich následků na aplikace turbostrojů pomocí matematických, numerických a experimentálních metod</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů