Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transfer Learning for Czech Historical Named Entity Recognition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43963747" target="_blank" >RIV/49777513:23520/21:43963747 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aclanthology.org/2021.ranlp-main.65.pdf" target="_blank" >https://aclanthology.org/2021.ranlp-main.65.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.26615/978-954-452-072-4_065" target="_blank" >10.26615/978-954-452-072-4_065</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transfer Learning for Czech Historical Named Entity Recognition

  • Popis výsledku v původním jazyce

    Nowadays, named entity recognition (NER) achieved excellent results on the standard corpora. However, big issues are emerging with a need for an application in a specific domain, because it requires a suitable annotated corpus with adapted NE tag-set. This is particularly evident in the historical document processing field. The main goal of this paper consists of proposing and evaluation of several transfer learning methods to increase the score of the Czech historical NER. We study several information sources, and we use two neural nets for NE modeling and recognition. We employ two corpora for evaluation of our transfer learning methods, namely Czech named entity corpus and Czech historical named entity corpus. We show that BERT representation with fine-tuning and only the simple classifier trained on the union of corpora achieves excellent results.

  • Název v anglickém jazyce

    Transfer Learning for Czech Historical Named Entity Recognition

  • Popis výsledku anglicky

    Nowadays, named entity recognition (NER) achieved excellent results on the standard corpora. However, big issues are emerging with a need for an application in a specific domain, because it requires a suitable annotated corpus with adapted NE tag-set. This is particularly evident in the historical document processing field. The main goal of this paper consists of proposing and evaluation of several transfer learning methods to increase the score of the Czech historical NER. We study several information sources, and we use two neural nets for NE modeling and recognition. We employ two corpora for evaluation of our transfer learning methods, namely Czech named entity corpus and Czech historical named entity corpus. We show that BERT representation with fine-tuning and only the simple classifier trained on the union of corpora achieves excellent results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF17_048%2F0007267" target="_blank" >EF17_048/0007267: VaV inteligentních komponent pokročilých technologií pro plzeňskou metropolitní oblast</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Deep Learning for Natural Language Processing Methods and Applications

  • ISBN

    978-954-452-072-4

  • ISSN

    1313-8502

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    576-582

  • Název nakladatele

    INCOMA, Ltd.

  • Místo vydání

    Shoumen

  • Místo konání akce

    Shoumen, Bulgaria

  • Datum konání akce

    1. 9. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku