Transfer Learning of Transformers for Spoken Language Understanding
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965700" target="_blank" >RIV/49777513:23520/22:43965700 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-16270-1_40" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-16270-1_40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-16270-1_40" target="_blank" >10.1007/978-3-031-16270-1_40</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer Learning of Transformers for Spoken Language Understanding
Popis výsledku v původním jazyce
Pre-trained models used in the transfer-learning scenario are recently becoming very popular. Such models benefit from the availability of large sets of unlabeled data. Two kinds of such models include the Wav2Vec 2.0 speech recognizer and T5 text-to-text transformer. In this paper, we describe a novel application of such models for dialog systems, where both the speech recognizer and the spoken language understanding modules are represented as Transformer models. Such composition outperforms the baseline based on the DNN-HMM speech recognizer and CNN understanding.
Název v anglickém jazyce
Transfer Learning of Transformers for Spoken Language Understanding
Popis výsledku anglicky
Pre-trained models used in the transfer-learning scenario are recently becoming very popular. Such models benefit from the availability of large sets of unlabeled data. Two kinds of such models include the Wav2Vec 2.0 speech recognizer and T5 text-to-text transformer. In this paper, we describe a novel application of such models for dialog systems, where both the speech recognizer and the spoken language understanding modules are represented as Transformer models. Such composition outperforms the baseline based on the DNN-HMM speech recognizer and CNN understanding.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-27800S" target="_blank" >GA22-27800S: Využití vícemodálních Transformerů pro přirozenější hlasový dialog</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Text, Speech, and Dialogue 25th International Conference, TSD 2022, Brno, Czech Republic, September 6–9, 2022, Proceedings
ISBN
978-3-031-16269-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
12
Strana od-do
489-500
Název nakladatele
Springer International Publishing
Místo vydání
Cham
Místo konání akce
Brno, Czech Republic
Datum konání akce
6. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—