Czech Dataset for Cross-lingual Subjectivity Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F22%3A43965946" target="_blank" >RIV/49777513:23520/22:43965946 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.lrec-1.148/" target="_blank" >https://aclanthology.org/2022.lrec-1.148/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Czech Dataset for Cross-lingual Subjectivity Classification
Popis výsledku v původním jazyce
In this paper, we introduce a new Czech subjectivity dataset of 10k manually annotated subjective and objective sentences from movie reviews and descriptions. Our prime motivation is to provide a reliable dataset that can be used with the existing English dataset as a benchmark to test the ability of pre-trained multilingual models to transfer knowledge between Czech and English and vice versa. Two annotators annotated the dataset reaching 0.83 of the Cohen’s kappa inter-annotator agreement. To the best of our knowledge, this is the first subjectivity dataset for the Czech language. We also created an additional dataset that consists of 200k automatically labeled sentences. Both datasets are freely available for research purposes. Furthermore, we fine-tune five pre-trained BERT-like models to set a monolingual baseline for the new dataset and we achieve 93.56% of accuracy. We fine-tune models on the existing English dataset for which we obtained results that are on par with the current state-of-the-art results. Finally, we perform zero-shot cross-lingual subjectivity classification between Czech and English to verify the usability of our dataset as the cross-lingual benchmark. We compare and discuss the cross-lingual and monolingual results and the ability of multilingual models to transfer knowledge between languages.
Název v anglickém jazyce
Czech Dataset for Cross-lingual Subjectivity Classification
Popis výsledku anglicky
In this paper, we introduce a new Czech subjectivity dataset of 10k manually annotated subjective and objective sentences from movie reviews and descriptions. Our prime motivation is to provide a reliable dataset that can be used with the existing English dataset as a benchmark to test the ability of pre-trained multilingual models to transfer knowledge between Czech and English and vice versa. Two annotators annotated the dataset reaching 0.83 of the Cohen’s kappa inter-annotator agreement. To the best of our knowledge, this is the first subjectivity dataset for the Czech language. We also created an additional dataset that consists of 200k automatically labeled sentences. Both datasets are freely available for research purposes. Furthermore, we fine-tune five pre-trained BERT-like models to set a monolingual baseline for the new dataset and we achieve 93.56% of accuracy. We fine-tune models on the existing English dataset for which we obtained results that are on par with the current state-of-the-art results. Finally, we perform zero-shot cross-lingual subjectivity classification between Czech and English to verify the usability of our dataset as the cross-lingual benchmark. We compare and discuss the cross-lingual and monolingual results and the ability of multilingual models to transfer knowledge between languages.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirteenth Language Resources and Evaluation Conference
ISBN
979-10-95546-72-6
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1381-1391
Název nakladatele
European Language Resources Association
Místo vydání
Marseille, France
Místo konání akce
Marseille, France
Datum konání akce
20. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000889371701052