Subcritical behaviour of short cylindrical journal bearings under periodic excitation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43968519" target="_blank" >RIV/49777513:23520/23:43968519 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11071-023-08372-3" target="_blank" >https://link.springer.com/article/10.1007/s11071-023-08372-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-023-08372-3" target="_blank" >10.1007/s11071-023-08372-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subcritical behaviour of short cylindrical journal bearings under periodic excitation
Popis výsledku v původním jazyce
Rotating machinery supported on journal bearings is affected by forces due to rotating unbalance and pressure gradients in the oil film. The interaction of these forces can evoke nonlinear behaviour, including asynchronous motion and even chaos. This work attempts to characterise the sub-synchronous motion of the rigid rotor supported on cylindrical journal bearings due to the abovementioned interaction. The analysis focuses on the rotor behaviour at the rotor speeds lower than the threshold speed for oil whirl, associated with sub-synchronous vibration of magnitude equaling the bearing clearance. It is shown that the sub-synchronous vibration can occur well before reaching the threshold speed and that the underlying period-doubling bifurcation depends on the amount of the rotating unbalance. The rotor response and stability are analysed using a numerical continuation method employing the infinitely short journal bearing model. Continuation results are further validated by time simulations which utilise the finite difference method to compute the hydrodynamic forces. The validation process employs bifurcation diagrams, Poincaré sections and numerical estimates of the largest Lyapunov exponents.
Název v anglickém jazyce
Subcritical behaviour of short cylindrical journal bearings under periodic excitation
Popis výsledku anglicky
Rotating machinery supported on journal bearings is affected by forces due to rotating unbalance and pressure gradients in the oil film. The interaction of these forces can evoke nonlinear behaviour, including asynchronous motion and even chaos. This work attempts to characterise the sub-synchronous motion of the rigid rotor supported on cylindrical journal bearings due to the abovementioned interaction. The analysis focuses on the rotor behaviour at the rotor speeds lower than the threshold speed for oil whirl, associated with sub-synchronous vibration of magnitude equaling the bearing clearance. It is shown that the sub-synchronous vibration can occur well before reaching the threshold speed and that the underlying period-doubling bifurcation depends on the amount of the rotating unbalance. The rotor response and stability are analysed using a numerical continuation method employing the infinitely short journal bearing model. Continuation results are further validated by time simulations which utilise the finite difference method to compute the hydrodynamic forces. The validation process employs bifurcation diagrams, Poincaré sections and numerical estimates of the largest Lyapunov exponents.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-29874S" target="_blank" >GA22-29874S: Termohydrodynamické účinky mezného skluzu a texturování povrchu kluzných kontaktů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Dynamics
ISSN
0924-090X
e-ISSN
1573-269X
Svazek periodika
111
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
9957-9970
Kód UT WoS článku
000954229300002
EID výsledku v databázi Scopus
2-s2.0-85150426726