A sequential global programming approach for two-scale optimization of homogenized multiphysics problems with application to Biot porous media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969245" target="_blank" >RIV/49777513:23520/23:43969245 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00158-023-03659-w" target="_blank" >https://doi.org/10.1007/s00158-023-03659-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00158-023-03659-w" target="_blank" >10.1007/s00158-023-03659-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A sequential global programming approach for two-scale optimization of homogenized multiphysics problems with application to Biot porous media
Popis výsledku v původním jazyce
We present a new approach and an algorithm for solving two-scale material optimization problems to optimize the behaviour of a fluid-saturated porous medium in a given domain. While the state problem is governed by the Biot model describing the fluid–structure interaction in homogenized poroelastic structures, the approach is widely applicable to multiphysics problems involving several macroscopic fields in which homogenization provides the relationship between the microconfigurations and the macroscopic mathematical model. The optimization variables describe the local microstructure design by virtue of the pore shape which determines the effective medium properties, namely the material coefficients, computed by the homogenization method. The numerical optimization strategy involves (a) precomputing a database of the material coefficients associated with the geometric parameters and (b) applying the sequential global programming (SGP) method for solving the problem of macroscopically optimized distribution of material coefficients. Although there are similarities to the free material optimization (FMO) approach, only effective material coefficients are considered admissible, for which a well-defined set of corresponding configurable microstructures exists. Due to the flexibility of the SGP approach, different types of microstructures with fully independent parametrizations can easily be handled. The efficiency of the concept is demonstrated by a series of numerical experiments that show that the SGP method can simultaneously handle multiple types of microstructures with nontrivial parametrizations using a considerably low and stable number of state problems to be solved.
Název v anglickém jazyce
A sequential global programming approach for two-scale optimization of homogenized multiphysics problems with application to Biot porous media
Popis výsledku anglicky
We present a new approach and an algorithm for solving two-scale material optimization problems to optimize the behaviour of a fluid-saturated porous medium in a given domain. While the state problem is governed by the Biot model describing the fluid–structure interaction in homogenized poroelastic structures, the approach is widely applicable to multiphysics problems involving several macroscopic fields in which homogenization provides the relationship between the microconfigurations and the macroscopic mathematical model. The optimization variables describe the local microstructure design by virtue of the pore shape which determines the effective medium properties, namely the material coefficients, computed by the homogenization method. The numerical optimization strategy involves (a) precomputing a database of the material coefficients associated with the geometric parameters and (b) applying the sequential global programming (SGP) method for solving the problem of macroscopically optimized distribution of material coefficients. Although there are similarities to the free material optimization (FMO) approach, only effective material coefficients are considered admissible, for which a well-defined set of corresponding configurable microstructures exists. Due to the flexibility of the SGP approach, different types of microstructures with fully independent parametrizations can easily be handled. The efficiency of the concept is demonstrated by a series of numerical experiments that show that the SGP method can simultaneously handle multiple types of microstructures with nontrivial parametrizations using a considerably low and stable number of state problems to be solved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
ISSN
1615-147X
e-ISSN
1615-1488
Svazek periodika
66
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
24
Strana od-do
—
Kód UT WoS článku
001067432200001
EID výsledku v databázi Scopus
2-s2.0-85170829741