Magnetic ground state of holmium nitride
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969327" target="_blank" >RIV/49777513:23520/23:43969327 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.commatsci.2023.112537" target="_blank" >https://doi.org/10.1016/j.commatsci.2023.112537</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.commatsci.2023.112537" target="_blank" >10.1016/j.commatsci.2023.112537</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Magnetic ground state of holmium nitride
Popis výsledku v původním jazyce
Rare-earth mononitrides such as HoN exhibit a wide range of useful properties leading to potential applications as magnetic semiconductors, spintronic half-metals, or magnetocaloric refrigerants in hydrogen liquefaction systems. First-principle calculations of electronic structures and related properties of such materials should correctly reproduce their magnetic moment. First, we identify the unusually high number of unoccupied electronic states which guarantees that the energy minimum identified is the global one. Second, we develop a method that allows experimentally relevant magnetization to constitute an energy minimum, emphasizing the favourable distribution of the spins in an exceptionally large simulation cell. Third, we examine the dependence of selected HoN characteristics on cell size and magnetization. The results provide a theoretical insight into the spin structure of rare-earth nitrides and allow one to use the correct methodology of similar calculations of properties of strongly correlated materials.
Název v anglickém jazyce
Magnetic ground state of holmium nitride
Popis výsledku anglicky
Rare-earth mononitrides such as HoN exhibit a wide range of useful properties leading to potential applications as magnetic semiconductors, spintronic half-metals, or magnetocaloric refrigerants in hydrogen liquefaction systems. First-principle calculations of electronic structures and related properties of such materials should correctly reproduce their magnetic moment. First, we identify the unusually high number of unoccupied electronic states which guarantees that the energy minimum identified is the global one. Second, we develop a method that allows experimentally relevant magnetization to constitute an energy minimum, emphasizing the favourable distribution of the spins in an exceptionally large simulation cell. Third, we examine the dependence of selected HoN characteristics on cell size and magnetization. The results provide a theoretical insight into the spin structure of rare-earth nitrides and allow one to use the correct methodology of similar calculations of properties of strongly correlated materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20506 - Coating and films
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTATIONAL MATERIALS SCIENCE
ISSN
0927-0256
e-ISSN
1879-0801
Svazek periodika
230
Číslo periodika v rámci svazku
25 OCT 2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
001097986100001
EID výsledku v databázi Scopus
2-s2.0-85173507621