Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Object Detection Pipeline Using YOLOv8 for Document Information Extraction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F23%3A43969624" target="_blank" >RIV/49777513:23520/23:43969624 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ceur-ws.org/Vol-3497/paper-051.pdf" target="_blank" >https://ceur-ws.org/Vol-3497/paper-051.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Object Detection Pipeline Using YOLOv8 for Document Information Extraction

  • Popis výsledku v původním jazyce

    The extraction of information from semi-structured documents is an ongoing problem. This task is often approached from the perspective of NLP and large transformer-based models are employed. In our work, we successfully demonstrated that the Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) tasks can be effectively addressed as object detection problems using a convolutional neural network (CNN) model. We utilized a relatively small and fast YOLOv8 model for which we conducted a series of experiments to explore the impact of different factors on model training. With YOLOv8, we were able to achieve AP 0.716 on the KILE task and 0.638 on the LIR task. Our code is available at https://github.com/strakaj/YOLOv8-for-document-understanding.git.

  • Název v anglickém jazyce

    Object Detection Pipeline Using YOLOv8 for Document Information Extraction

  • Popis výsledku anglicky

    The extraction of information from semi-structured documents is an ongoing problem. This task is often approached from the perspective of NLP and large transformer-based models are employed. In our work, we successfully demonstrated that the Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR) tasks can be effectively addressed as object detection problems using a convolutional neural network (CNN) model. We utilized a relatively small and fast YOLOv8 model for which we conducted a series of experiments to explore the impact of different factors on model training. With YOLOv8, we were able to achieve AP 0.716 on the KILE task and 0.638 on the LIR task. Our code is available at https://github.com/strakaj/YOLOv8-for-document-understanding.git.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    CEUR Workshop Proceedings

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    583-597

  • Název nakladatele

    CEUR-WS

  • Místo vydání

    Thessaloniki

  • Místo konání akce

    Thessaloniki, Greece

  • Datum konání akce

    18. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku